結果
| 問題 |
No.1745 Selfish Spies 2 (à la Princess' Perfectionism)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-11-14 22:22:26 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,728 bytes |
| コンパイル時間 | 18,928 ms |
| コンパイル使用メモリ | 379,032 KB |
| 実行使用メモリ | 72,136 KB |
| 最終ジャッジ日時 | 2024-11-30 08:05:09 |
| 合計ジャッジ時間 | 21,792 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 WA * 32 |
ソースコード
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/**
* Dinic's algorithm for maximum flow problem.
* Verified by: yukicoder No.177 (http://yukicoder.me/submissions/148371)
* Min-cut (the second element of max_flow's returned values) is not verified.
*/
#[derive(Clone)]
struct Edge<T> {
to: usize,
cap: T,
rev: usize, // rev is the position of the reverse edge in graph[to]
}
struct Dinic<T> {
graph: Vec<Vec<Edge<T>>>,
iter: Vec<usize>,
zero: T,
}
impl<T> Dinic<T>
where T: Clone,
T: Copy,
T: Ord,
T: std::ops::AddAssign,
T: std::ops::SubAssign,
{
fn bfs(&self, s: usize, level: &mut [Option<usize>]) {
let n = level.len();
for i in 0 .. n {
level[i] = None;
}
let mut que = std::collections::VecDeque::new();
level[s] = Some(0);
que.push_back(s);
while let Some(v) = que.pop_front() {
for e in self.graph[v].iter() {
if e.cap > self.zero && level[e.to] == None {
level[e.to] = Some(level[v].unwrap() + 1);
que.push_back(e.to);
}
}
}
}
/* search augment path by dfs.
* if f == None, f is treated as infinity.
*/
fn dfs(&mut self, v: usize, t: usize, f: Option<T>, level: &mut [Option<usize>]) -> T {
if v == t {
return f.unwrap();
}
while self.iter[v] < self.graph[v].len() {
let i = self.iter[v];
let e = self.graph[v][i].clone();
if e.cap > self.zero && level[v] < level[e.to] {
let newf = std::cmp::min(f.unwrap_or(e.cap), e.cap);
let d = self.dfs(e.to, t, Some(newf), level);
if d > self.zero {
self.graph[v][i].cap -= d;
self.graph[e.to][e.rev].cap += d;
return d;
}
}
self.iter[v] += 1;
}
self.zero
}
pub fn new(n: usize, zero: T) -> Self {
Dinic {
graph: vec![Vec::new(); n],
iter: vec![0; n],
zero: zero,
}
}
pub fn add_edge(&mut self, from: usize, to: usize, cap: T) {
let added_from = Edge { to: to, cap: cap,
rev: self.graph[to].len() };
let added_to = Edge { to: from, cap: self.zero,
rev: self.graph[from].len() };
self.graph[from].push(added_from);
self.graph[to].push(added_to);
}
pub fn max_flow(&mut self, s: usize, t: usize) -> (T, Vec<usize>) {
let mut flow = self.zero;
let n = self.graph.len();
let mut level = vec![None; n];
loop {
self.bfs(s, &mut level);
if level[t] == None {
let ret = (0 .. n).filter(|&i| level[i] == None)
.collect();
return (flow, ret);
}
self.iter.clear();
self.iter.resize(n, 0);
loop {
let f = self.dfs(s, t, None, &mut level);
if f <= self.zero { break; }
flow += f;
}
}
}
}
// Strong connected components.
// Verified by: yukicoder No.470 (http://yukicoder.me/submissions/145785)
// ABC214-H (https://atcoder.jp/contests/abc214/submissions/25082618)
struct SCC {
n: usize,
ncc: usize,
g: Vec<Vec<usize>>, // graph in adjacent list
rg: Vec<Vec<usize>>, // reverse graph
cmp: Vec<usize>, // topological order
}
impl SCC {
fn new(n: usize) -> Self {
SCC {
n: n,
ncc: n + 1,
g: vec![Vec::new(); n],
rg: vec![Vec::new(); n],
cmp: vec![0; n],
}
}
fn add_edge(&mut self, from: usize, to: usize) {
self.g[from].push(to);
self.rg[to].push(from);
}
fn dfs(&self, v: usize, used: &mut [bool], vs: &mut Vec<usize>) {
used[v] = true;
for &w in self.g[v].iter() {
if !used[w] {
self.dfs(w, used, vs);
}
}
vs.push(v);
}
fn rdfs(&self, v: usize, k: usize,
used: &mut [bool], cmp: &mut [usize]) {
used[v] = true;
cmp[v] = k;
for &w in self.rg[v].iter() {
if !used[w] {
self.rdfs(w, k, used, cmp);
}
}
}
fn scc(&mut self) -> usize {
let n = self.n;
let mut used = vec![false; n];
let mut vs = Vec::new();
let mut cmp = vec![0; n];
for v in 0 .. n {
if !used[v] { self.dfs(v, &mut used, &mut vs); }
}
for u in used.iter_mut() {
*u = false;
}
let mut k = 0;
for &t in vs.iter().rev() {
if !used[t] { self.rdfs(t, k, &mut used, &mut cmp); k += 1; }
}
self.ncc = k;
self.cmp = cmp;
k
}
#[allow(dead_code)]
fn top_order(&self) -> Vec<usize> {
assert!(self.ncc <= self.n);
self.cmp.clone()
}
/*
* Returns a dag whose vertices are scc's, and whose edges are those of the original graph.
*/
#[allow(dead_code)]
fn dag(&self) -> Vec<Vec<usize>> {
assert!(self.ncc <= self.n);
let ncc = self.ncc;
let mut ret = vec![vec![]; ncc];
let n = self.n;
for i in 0 .. n {
for &to in self.g[i].iter() {
if self.cmp[i] != self.cmp[to] {
assert!(self.cmp[i] < self.cmp[to]);
ret[self.cmp[i]].push(self.cmp[to]);
}
}
}
ret.into_iter().map(|mut v| {
v.sort_unstable(); v.dedup();
v
}).collect()
}
#[allow(dead_code)]
fn rdag(&self) -> Vec<Vec<usize>> {
assert!(self.ncc <= self.n);
let ncc = self.ncc;
let mut ret = vec![vec![]; ncc];
let n = self.n;
for i in 0 .. n {
for &to in self.g[i].iter() {
if self.cmp[i] != self.cmp[to] {
assert!(self.cmp[i] < self.cmp[to]);
ret[self.cmp[to]].push(self.cmp[i]);
}
}
}
ret.into_iter().map(|mut v| {
v.sort_unstable(); v.dedup();
v
}).collect()
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
// Tags: dulmage–mendelsohn, matchings
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
input! {
n: usize, m: usize, l: usize,
ab: [(usize1, usize1); l],
}
let mut din = Dinic::new(2 + n + m, 0);
for i in 0..n {
din.add_edge(0, 2 + i, 1);
}
for i in 0..m {
din.add_edge(2 + n + i, 1, 1);
}
for &(a, b) in &ab {
din.add_edge(2 + a, 2 + n + b, 1);
}
let _ = din.max_flow(0, 1);
let mut scc = SCC::new(n + m);
for &(a, b) in &ab {
scc.add_edge(a, n + b);
}
for i in 0..m {
for e in &din.graph[2 + n + i] {
if e.to >= 2 && e.cap == 1 {
scc.add_edge(n + i, e.to - 2);
}
}
}
scc.scc();
let top_ord = scc.top_order();
for i in 0..l {
let (a, b) = ab[i];
puts!("{}\n", if top_ord[a] == top_ord[n + b] { "Yes" } else { "No" });
}
}