結果
問題 | No.1802 Range Score Query for Bracket Sequence |
ユーザー | tokusakurai |
提出日時 | 2022-01-07 22:17:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,769 bytes |
コンパイル時間 | 2,573 ms |
コンパイル使用メモリ | 214,684 KB |
実行使用メモリ | 9,924 KB |
最終ジャッジ日時 | 2024-11-14 08:50:57 |
合計ジャッジ時間 | 8,769 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 2 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,816 KB |
testcase_18 | AC | 2 ms
6,816 KB |
testcase_19 | AC | 2 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 2 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 1 ms
6,820 KB |
testcase_24 | AC | 2 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < n; i++) #define rep2(i, x, n) for (int i = x; i <= n; i++) #define rep3(i, x, n) for (int i = x; i >= n; i--) #define each(e, v) for (auto &e : v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; const int MOD = 1000000007; // const int MOD = 998244353; template <typename T> struct Binary_Indexed_Tree { vector<T> bit; const int n; Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) { bit.resize(n + 1); copy(begin(v), end(v), begin(bit) + 1); for (int a = 2; a <= n; a <<= 1) { for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2]; } } Binary_Indexed_Tree(int n, const T &x) : n(n) { bit.resize(n + 1); vector<T> v(n, x); copy(begin(v), end(v), begin(bit) + 1); for (int a = 2; a <= n; a <<= 1) { for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2]; } } void add(int i, const T &x) { for (i++; i <= n; i += (i & -i)) bit[i] += x; } void change(int i, const T &x) { add(i, x - query(i, i + 1)); } T sum(int i) const { T ret = 0; for (; i > 0; i -= (i & -i)) ret += bit[i]; return ret; } T query(int l, int r) const { return sum(r) - sum(l); } T operator[](int i) const { return query(i, i + 1); } int lower_bound(T x) const { int ret = 0; for (int k = 31 - __builtin_clz(n); k >= 0; k--) { if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)]; } return ret; } int upper_bound(T x) const { int ret = 0; for (int k = 31 - __builtin_clz(n); k >= 0; k--) { if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)]; } return ret; } }; template <typename Monoid, typename Operator_Monoid> struct Lazy_Segment_Tree { using F = function<Monoid(Monoid, Monoid)>; using G = function<Monoid(Monoid, Operator_Monoid)>; using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>; int n, height; vector<Monoid> seg; vector<Operator_Monoid> lazy; const F f; const G g; const H h; const Monoid e1; const Operator_Monoid e2; // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p // g(f(a,b),p) = f(g(a,p),g(b,p)) // g(g(a,p),q) = g(a,h(p,q)) Lazy_Segment_Tree(const vector<Monoid> &v, const F &f, const G &g, const H &h, const Monoid &e1, const Operator_Monoid &e2) : f(f), g(g), h(h), e1(e1), e2(e2) { int m = v.size(); n = 1, height = 0; while (n < m) n <<= 1, height++; seg.assign(2 * n, e1), lazy.assign(2 * n, e2); copy(begin(v), end(v), seg.begin() + n); for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } Lazy_Segment_Tree(int m, const Monoid &x, const F &f, const G &g, const H &h, const Monoid &e1, const Operator_Monoid &e2) : f(f), g(g), h(h), e1(e1), e2(e2) { n = 1, height = 0; while (n < m) n <<= 1, height++; seg.assign(2 * n, e1), lazy.assign(2 * n, e2); vector<Monoid> v(m, x); copy(begin(v), end(v), seg.begin() + n); for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } inline Monoid reflect(int i) const { return (lazy[i] == e2 ? seg[i] : g(seg[i], lazy[i])); } inline void recalc(int i) { while (i >>= 1) seg[i] = f(reflect(2 * i), reflect(2 * i + 1)); } inline void eval(int i) { if (i < n && lazy[i] != e2) { lazy[2 * i] = h(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]); seg[i] = reflect(i), lazy[i] = e2; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void apply(int l, int r, const Operator_Monoid &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += n, r += n; thrust(l), thrust(r - 1); int a = l, b = r; while (l < r) { if (l & 1) lazy[l] = h(lazy[l], x), l++; if (r & 1) r--, lazy[r] = h(lazy[r], x); l >>= 1, r >>= 1; } recalc(a), recalc(b - 1); } Monoid query(int l, int r) { l = max(l, 0), r = min(r, n); if (l >= r) return e1; l += n, r += n; thrust(l), thrust(r - 1); Monoid L = e1, R = e1; while (l < r) { if (l & 1) L = f(L, reflect(l++)); if (r & 1) R = f(reflect(--r), R); l >>= 1, r >>= 1; } return f(L, R); } Monoid operator[](int i) { return query(i, i + 1); } template <typename C> int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, int type) { while (i < n) { eval(i); Monoid nxt = type ? f(reflect(2 * i + type), M) : f(M, reflect(2 * i + type)); if (check(nxt, x)) { i = 2 * i + type; } else { M = nxt; i = 2 * i + (type ^ 1); } } return i - n; } template <typename C> int find_first(int l, const C &check, const Monoid &x) { // check((区間 [l,r] での演算結果), x) を満たす最小の r Monoid L = e1; int a = l + n, b = n + n; thrust(a); while (a < b) { if (a & 1) { Monoid nxt = f(L, reflect(a)); if (check(nxt, x)) return find_subtree(a, check, x, L, 0); L = nxt, a++; } a >>= 1, b >>= 1; } return n; } template <typename C> int find_last(int r, const C &check, const Monoid &x) { // check((区間 [l,r) での演算結果), x) を満たす最大の l Monoid R = e1; int a = n, b = r + n; thrust(b - 1); while (a < b) { if ((b & 1) || a == 1) { Monoid nxt = f(reflect(--b), R); if (check(nxt, x)) return find_subtree(b, check, x, R, 1); R = nxt; } a >>= 1, b >>= 1; } return -1; } }; int main() { int N, Q; string S; cin >> N >> Q >> S; Binary_Indexed_Tree<int> b1(N, 0), b2(N, 0); auto f = [](int a, int b) { return min(a, b); }; auto g = [](int a, int b) { return a + b; }; auto h = [](int a, int b) { return a + b; }; auto c = [](int a, int b) { return a <= b; }; Lazy_Segment_Tree<int, int> seg(N + 1, 0, f, g, h, inf, 0); vector<int> a(N); rep(i, N) { if (i == 0 || S[i - 1] != S[i]) { if (S[i] == '(') b1.add(i, 1); else b2.add(i, 1); } if (S[i] == '(') { seg.apply(i + 1, N + 1, 1); a[i] = 1; } else { seg.apply(i + 1, N + 1, -1); a[i] = -1; } } while (Q--) { int t; cin >> t; if (t == 1) { int x; cin >> x; x--; seg.apply(x + 1, N + 1, -a[x]); if (x == 0 || a[x] == a[x - 1]) { if (a[x] == 1) { b2.add(x, 1); } else { b1.add(x, 1); } } if (x == 0 || a[x] != a[x - 1]) { if (a[x] == 1) { b1.add(x, -1); } else { b2.add(x, -1); } } if (x < N - 1 && a[x] == a[x + 1]) { if (a[x] == 1) { b1.add(x + 1, 1); } else { b2.add(x + 1, 1); } } if (x < N - 1 && a[x] != a[x + 1]) { if (a[x] == 1) { b2.add(x + 1, -1); } else { b1.add(x + 1, -1); } } a[x] *= -1; seg.apply(x + 1, N + 1, a[x]); } else { int l, r; cin >> l >> r; l--; int x = seg.query(l, r + 1); int m = seg.find_first(l, c, x); // cout << m << ' '; cout << b1.query(l, m) + b2.query(m, r) << '\n'; } } }