結果

問題 No.1827 最長部分スーパーリッチ門松列列
ユーザー 👑 rin204rin204
提出日時 2022-01-28 22:28:03
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 6,570 bytes
コンパイル時間 143 ms
コンパイル使用メモリ 82,456 KB
実行使用メモリ 164,908 KB
最終ジャッジ日時 2024-06-09 15:41:52
合計ジャッジ時間 8,008 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 61 ms
68,480 KB
testcase_01 AC 62 ms
68,352 KB
testcase_02 AC 61 ms
68,736 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 AC 184 ms
164,608 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 582 ms
164,624 KB
testcase_23 AC 575 ms
164,088 KB
testcase_24 AC 576 ms
164,888 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class SegTree():
    def __init__(self, n, e, ope, lst=[]):
        self.N0 = 2 ** (n - 1).bit_length()
        self.e = e
        self.ope = ope
        self.data = [e] * (2 * self.N0)
        if lst:
            for i in range(n):
                self.data[self.N0 + i] = lst[i]
            for i in range(self.N0 - 1, 0, -1):
                self.data[i] = self.ope(self.data[2 * i], self.data[2 * i + 1])
    
    def f5(self):
        for i in range(self.N0 - 1, 0, -1):
            self.data[i] = self.ope(self.data[2 * i], self.data[2 * i + 1])
                
    def update(self, i, x): #a_iの値をxに更新
        i += self.N0
        self.data[i] = x
        while i > 1:
            i >>= 1
            self.data[i] = self.ope(self.data[2 * i], self.data[2 * i + 1])
    
    def add(self, i, x):
        self.update(i, x + self.get(i))
    
    def query(self, l, r): #区間[l, r)での演算結果
        if r <= l:
            return self.e
            
        lres = self.e
        rres = self.e
        l += self.N0
        r += self.N0
        while l < r:
            if l & 1:
                lres = self.ope(lres, self.data[l])
                l += 1
            if r & 1:
                r -= 1
                rres = self.ope(self.data[r], rres)
            l >>= 1
            r >>= 1
        return self.ope(lres, rres)
            
    
    def get(self, i): #a_iの値を返す
        return self.data[self.N0 + i]

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')

class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True
    
    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

def solve():
    n = int(input())
    P = list(map(int, input().split()))
    A = [-1] * n
    for i, p in enumerate(P):
        A[p - 1] = i
        
    used = [False] * n
    e = 0
    ope = lambda x, y: max(x, y)
    seg = SegTree(n, e, ope, [p - 1 for p in P])
    sl = SortedSet()
    sl.add(-1)
    sl.add(n)
    ma = n - 1
    
    for i, p in enumerate(A):
        if p != 0 and used[p - 1]:
            continue
        if p != n - 1 and used[p + 1]:
            continue
        il = sl.lt(p)
        ir = sl.gt(p)
        sl.add(p)
        if p != 0:
            ma = min(ma, seg.query(il + 1, p))
        if p != n - 1:
            ma = min(ma, seg.query(p + 1, ir))
        if i >= ma:
            break
        used[p] = True
    
    ans = 2 * sum(used) + 1
    if used[0]:
        ans -= 1
    if used[-1]:
        ans -= 1
    print(ans)
    

for _ in range(int(input())):
    solve()
0