結果
問題 | No.1827 最長部分スーパーリッチ門松列列 |
ユーザー | 👑 rin204 |
提出日時 | 2022-01-28 22:31:49 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,633 bytes |
コンパイル時間 | 165 ms |
コンパイル使用メモリ | 82,500 KB |
実行使用メモリ | 161,180 KB |
最終ジャッジ日時 | 2024-06-09 15:48:50 |
合計ジャッジ時間 | 16,970 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 65 ms
68,352 KB |
testcase_01 | AC | 63 ms
67,968 KB |
testcase_02 | AC | 64 ms
68,992 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | AC | 609 ms
160,924 KB |
testcase_15 | WA | - |
testcase_16 | AC | 595 ms
160,296 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 746 ms
160,712 KB |
testcase_23 | AC | 646 ms
160,556 KB |
testcase_24 | AC | 649 ms
160,420 KB |
ソースコード
class SegTree(): def __init__(self, n, e, ope, lst=[]): self.N0 = 2 ** (n - 1).bit_length() self.e = e self.ope = ope self.data = [e] * (2 * self.N0) if lst: for i in range(n): self.data[self.N0 + i] = lst[i] for i in range(self.N0 - 1, 0, -1): self.data[i] = self.ope(self.data[2 * i], self.data[2 * i + 1]) def f5(self): for i in range(self.N0 - 1, 0, -1): self.data[i] = self.ope(self.data[2 * i], self.data[2 * i + 1]) def update(self, i, x): #a_iの値をxに更新 i += self.N0 self.data[i] = x while i > 1: i >>= 1 self.data[i] = self.ope(self.data[2 * i], self.data[2 * i + 1]) def add(self, i, x): self.update(i, x + self.get(i)) def query(self, l, r): #区間[l, r)での演算結果 if r <= l: return self.e lres = self.e rres = self.e l += self.N0 r += self.N0 while l < r: if l & 1: lres = self.ope(lres, self.data[l]) l += 1 if r & 1: r -= 1 rres = self.ope(self.data[r], rres) l >>= 1 r >>= 1 return self.ope(lres, rres) def get(self, i): #a_iの値を返す return self.data[self.N0 + i] # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans def solve(): n = int(input()) P = list(map(int, input().split())) P = [p - 1 for p in P] A = [-1] * n for i, p in enumerate(P): A[p] = i used = [False] * n e = 0 ope = lambda x, y: max(x, y) seg = SegTree(n, e, ope, P) sl = SortedSet() sl.add(-1) sl.add(n) ma = n - 1 for i, p in enumerate(A): if p != 0 and used[p - 1]: continue if p != n - 1 and used[p + 1]: continue il = sl.lt(p) ir = sl.gt(p) mm = ma if p != 0: mm = min(mm, seg.query(il + 1, p)) if p != n - 1: mm = min(mm, seg.query(p + 1, ir)) if i >= mm: pass else: sl.add(p) used[p] = True ma = mm ans = 2 * sum(used) + 1 if used[0]: ans -= 1 if used[-1]: ans -= 1 print(ans) for _ in range(int(input())): solve()