結果
| 問題 |
No.1835 Generalized Monty Hall Problem
|
| コンテスト | |
| ユーザー |
👑 Kazun
|
| 提出日時 | 2022-02-12 00:42:10 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 45 ms / 1,000 ms |
| コード長 | 4,714 bytes |
| コンパイル時間 | 202 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 53,248 KB |
| 最終ジャッジ日時 | 2024-06-27 23:37:26 |
| 合計ジャッジ時間 | 1,500 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 11 |
ソースコード
from math import gcd
class Fraction():
reduction=0
__slots__=("a","b")
##入力定義
def __init__(self, Numerator=0, Denominator=1, reduction=True, expanded=False):
"""分数のオブジェクトを生成する.
Numerator: 分子
Denominator: 分母 (!=0)
"""
assert Denominator or expanded,"分母が0"
if Denominator<0:
Numerator*=-1
Denominator*=-1
self.a=Numerator
self.b=Denominator
if reduction:
g=gcd(Numerator, Denominator)
self.a=Numerator//g
self.b=Denominator//g
#表示定義
def __str__(self):
if self.b==1:
return str(self.a)
else:
return "{}/{}".format(self.a,self.b)
__repr__=__str__
#四則演算定義
def __add__(self,other):
if other.__class__==Fraction:
x=self.a*other.b+self.b*other.a
y=self.b*other.b
elif other.__class__==int:
x=self.a+self.b*other
y=self.b
else:
assert 0,"型が違う"
return Fraction(x,y)
def __radd__(self,other):
return self+other
def __sub__(self,other):
if other.__class__==Fraction:
x=self.a*other.b-self.b*other.a
y=self.b*other.b
elif other.__class__==int:
x=self.a-self.b*other
y=self.b
else:
assert 0,"型が違う"
return Fraction(x,y)
def __rsub__(self,other):
return -self+other
def __mul__(self,other):
if other.__class__==Fraction:
x=self.a*other.a
y=self.b*other.b
elif other.__class__==int:
x=self.a*other
y=self.b
else:
assert 0,"型が違う"
return Fraction(x,y)
def __rmul__(self,other):
return self*other
def __floordiv__(self,other):
if other==Fraction():
raise ZeroDivisionError
H=self/other
return H.a//H.b
def __rfloordiv__(self,other):
if self==Fraction():
raise ZeroDivisionError
H=other/self
return H.a//H.b
def __truediv__(self,other):
assert other,"除数が0"
if other.__class__==Fraction:
x=self.a*other.b
y=self.b*other.a
elif other.__class__==int:
x=self.a
y=self.b*other
else:
assert 0,"型が違う"
return Fraction(x,y)
def __rtruediv__(self,other):
assert self,"除数が0"
if other.__class__==Fraction:
x=other.a*self.b
y=other.b*self.a
elif other.__class__==int:
x=other*self.b
y=self.a
else:
assert 0,"型が違う"
return Fraction(x,y)
def __pow__(self,m):
alpha,beta=self.a,self.b
if m<0:
alpha,beta=beta,alpha
m=-m
return Fraction(pow(alpha,m),pow(beta,m))
#丸め
def __floor__(self):
return self.a//self.b
def __ceil__(self):
return (self.a+self.b-1)//self.b
#真偽値
def __bool__(self):
return bool(self.a)
#比較
def __eq__(self,other):
if other.__class__==Fraction:
return self.a*other.b==self.b*other.a
elif other.__class__==int:
return self.a==self.b*other
else:
assert 0,"型が違う"
def __nq__(self,other):
return not(self==other)
def __lt__(self,other):
return self<=other and self!=other
def __le__(self,other):
if other.__class__==Fraction:
return self.a*other.b<=self.b*other.a
elif other.__class__==int:
return self.a<=self.b*other
else:
assert 0,"型が違う"
def __gt__(self,other):
return other<=self and other!=self
def __ge__(self,other):
return other<=self
#その他
def __float__(self):
return self.a/self.b
def sign(self):
s=self.a*self.b
if s>0:return 1
elif s==0:return 0
else:return -1
#符号
def __pos__(self):
return self
def __neg__(self):
return Fraction(-self.a,self.b)
def __abs__(self):
if self.a>0:
return self
else:
return -self
#その他
def is_unit(self):
return self.a==1
def __hash__(self):
return hash(10**9*self.a+self.b)
#==================================================
N,M,K=map(int,input().split())
P=Fraction(M,N)*Fraction(M-1,N-K-1)+(1-Fraction(M,N))*Fraction(M,N-K-1)
print(P.a,P.b)
Kazun