結果
| 問題 |
No.235 めぐるはめぐる (5)
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2022-03-25 02:30:06 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 17,714 bytes |
| コンパイル時間 | 117 ms |
| コンパイル使用メモリ | 14,592 KB |
| 実行使用メモリ | 144,884 KB |
| 最終ジャッジ日時 | 2024-10-13 09:46:12 |
| 合計ジャッジ時間 | 24,181 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 1 -- * 2 |
ソースコード
import sys
readline=sys.stdin.readline
class Graph:
def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if graph:
self.graph=graph
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
else:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
x,y=tpl[:2] if self.weighted else tpl
if uwd[x]==self.inf or uwd[y]==self.inf:
continue
if not uwd[x]%2^uwd[y]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def Build_HLD(self,s):
self.hld_parents,size,self.hld_depth=self.SIV_DFS(s,parents=True,subtree_size=True,unweighted_dist=True)
stack=[s]
self.hld_tour=[]
self.hld_path_parents=[None]*self.V
self.hld_path_parents[s]=s
while stack:
x=stack.pop()
self.hld_tour.append(x)
max_size=0
max_size_y=None
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==self.hld_parents[x]:
continue
if max_size<size[y]:
max_size=size[y]
max_size_y=y
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==self.hld_parents[x]:
continue
if y!=max_size_y:
stack.append(y)
self.hld_path_parents[y]=y
if max_size_y!=None:
stack.append(max_size_y)
self.hld_path_parents[max_size_y]=self.hld_path_parents[x]
self.hld_tour_idx=[None]*self.V
for i in range(self.V):
self.hld_tour_idx[self.hld_tour[i]]=i
def HLD(self,a,b,edge=False):
L,R=[],[]
while self.hld_path_parents[a]!=self.hld_path_parents[b]:
if self.hld_depth[self.hld_path_parents[a]]<self.hld_depth[self.hld_path_parents[b]]:
R.append((self.hld_tour_idx[self.hld_path_parents[b]],self.hld_tour_idx[b]+1))
b=self.hld_parents[self.hld_path_parents[b]]
else:
L.append((self.hld_tour_idx[a]+1,self.hld_tour_idx[self.hld_path_parents[a]]))
a=self.hld_parents[self.hld_path_parents[a]]
if edge:
if self.hld_depth[a]!=self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+R[::-1]
else:
if self.hld_depth[a]<self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a],self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b])]+R[::-1]
return retu
class Lazy_Segment_Tree:
def __init__(self,N,f,e,f_act,e_act,operate,lst=None):
self.N=N
self.f=f
self.e=e
self.f_act=f_act
self.e_act=e_act
self.operate=operate
self.segment_tree=[self.e]*(self.N+self.N)
self.segment_tree_act=[self.e_act]*(self.N+self.N)
if lst!=None:
for i,x in enumerate(lst):
self.segment_tree[i+self.N]=x
for i in range(self.N-1,0,-1):
self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
self.segment_tree_act=[self.e_act]*(self.N+self.N)
def __getitem__(self,i):
if type(i) is int:
if -self.N<=i<0:
i+=self.N*2
elif 0<=i<self.N:
i+=self.N
else:
raise IndexError('list index out of range')
self.Propagate_Above(i)
self.Recalculate_Above(i)
return self.Operate_At(i)
else:
a,b,c=i.start,i.stop,i.step
if a==None or a<-self.N:
a=self.N
elif self.N<=a:
a=self.N*2
elif a<0:
a+=self.N*2
else:
a+=self.N
if b==None or self.N<=b:
b=self.N*2
elif b<-self.N:
b=self.N
elif b<0:
b+=self.N*2
else:
b+=self.N
return self.segment_tree[slice(a,b,c)]
def __setitem__(self,i,x):
if -self.N<=i<0:
i+=self.N*2
elif 0<=i<self.N:
i+=self.N
else:
raise IndexError('list index out of range')
self.Propagate_Above(i)
self.segment_tree[i]=x
self.segment_tree_act[i]=self.e_act
self.Recalculate_Above(i)
def Operate_At(self,i):
return self.operate(self.segment_tree[i],self.segment_tree_act[i])
def Propagate_At(self,i):
self.segment_tree[i]=self.Operate_At(i)
self.segment_tree_act[i<<1]=self.f_act(self.segment_tree_act[i<<1],self.segment_tree_act[i])
self.segment_tree_act[i<<1|1]=self.f_act(self.segment_tree_act[i<<1|1],self.segment_tree_act[i])
self.segment_tree_act[i]=self.e_act
def Propagate_Above(self,i):
H=i.bit_length()-1
for h in range(H,0,-1):
self.Propagate_At(i>>h)
def Recalculate_Above(self,i):
while i>1:
i>>=1
self.segment_tree[i]=self.f(self.Operate_At(i<<1),self.Operate_At(i<<1|1))
def Build(self,lst):
for i,x in enumerate(lst):
self.segment_tree[i+self.N]=x
for i in range(self.N-1,0,-1):
self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
self.segment_tree_act=[self.e_act]*(self.N+self.N)
def Fold(self,L=None,R=None):
if L==None:
L=self.N
else:
L+=self.N
if R==None:
R=self.N*2
else:
R+=self.N
self.Propagate_Above(L//(L&-L))
self.Propagate_Above(R//(R&-R)-1)
vL=self.e
vR=self.e
while L<R:
if L&1:
vL=self.f(vL,self.Operate_At(L))
L+=1
if R&1:
R-=1
vR=self.f(self.Operate_At(R),vR)
L>>=1
R>>=1
return self.f(vL,vR)
def Fold_Index(self,L=None,R=None):
if L==None:
L=self.N
else:
L+=self.N
if R==None:
R=self.N*2
else:
R+=self.N
if L==R:
return None
x=self.Fold(L-self.N,R-self.N)
while L<R:
if L&1:
if self.segment_tree[L]==x:
i=L
break
L+=1
if R&1:
R-=1
if self.segment_tree[R]==x:
i=R
break
L>>=1
R>>=1
while i<self.N:
if self.segment_tree[i]==self.segment_tree[i<<1]:
i<<=1
else:
i<<=1
i|=1
i-=self.N
return i
def Operate_Range(self,a,L=None,R=None):
if L==None:
L=self.N
else:
L+=self.N
if R==None:
R=self.N*2
else:
R+=self.N
L0=L//(L&-L)
R0=R//(R&-R)-1
self.Propagate_Above(L0)
self.Propagate_Above(R0)
while L<R:
if L&1:
self.segment_tree_act[L]=self.f_act(self.segment_tree_act[L],a)
L+=1
if R&1:
R-=1
self.segment_tree_act[R]=self.f_act(self.segment_tree_act[R],a)
L>>=1
R>>=1
self.Recalculate_Above(L0)
self.Recalculate_Above(R0)
def Update(self):
for i in range(1,self.N):
self.Propagate_At(i)
for i in range(self.N,self.N*2):
self.segment_tree[i]=self.Operate_At(i)
self.segment_tree_act[i]=self.e_act
for i in range(self.N-1,0,-1):
self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
def Bisect_Right(self,L=None,f=None):
if L==self.N:
return self.N
if L==None:
L=0
L+=self.N
self.Propagate_Above(L//(L&-L))
self.Propagate_Above(self.N//(self.N&-self.N)-1)
l,r=L,self.N*2
vl=self.e
vr=self.e
while l<r:
if l&1:
vl=self.f(vl,self.Operate_At(l))
l+=1
if r&1:
r-=1
vr=self.f(self.Operate_At(r),vr)
l>>=1
r>>=1
if f(self.f(vl,vr)):
return self.N
v=self.e
self.Propagate_Above(L)
while True:
while L%2==0:
L>>=1
vv=self.f(v,self.Operate_At(L))
if f(vv):
v=vv
L+=1
else:
while L<self.N:
self.Propagate_At(L)
L<<=1
vv=self.f(v,self.Operate_At(L))
if f(vv):
v=vv
L+=1
return L-self.N
def Bisect_Left(self,R=None,f=None):
if R==0:
return 0
if R==None:
R=self.N
R+=self.N
self.Propagate_Above(self.N//(self.N&-self.N))
self.Propagate_Above(R//(R&-R)-1)
vl=self.e
vr=self.e
l,r=self.N,R
while l<r:
if l&1:
vl=self.f(vl,self.Operate_At(l))
l+=1
if r&1:
r-=1
vr=self.f(self.Operate_At(r),vr)
l>>=1
r>>=1
if f(self.f(vl,vr)):
return 0
v=self.e
self.Propagate_Above(R-1)
while True:
R-=1
while R>1 and R%2:
R>>=1
vv=self.f(self.Operate_At(R),v)
if f(vv):
v=vv
else:
while R<self.N:
self.Propagate_At(R)
R=(R<<1)|1
vv=self.f(self.Operate_At(R),v)
if f(vv):
v=vv
R-=1
return R+1-self.N
def __str__(self):
import copy
segment_tree=copy.deepcopy(self.segment_tree)
segment_tree_act=copy.deepcopy(self.segment_tree_act)
for i in range(1,self.N):
segment_tree[i]=self.operate(segment_tree[i],segment_tree_act[i])
segment_tree_act[i<<1]=self.f_act(segment_tree_act[i<<1],segment_tree_act[i])
segment_tree_act[i<<1|1]=self.f_act(segment_tree_act[i<<1|1],segment_tree_act[i])
segment_tree_act[i]=self.e_act
for i in range(self.N,self.N*2):
segment_tree[i]=self.operate(segment_tree[i],segment_tree_act[i])
segment_tree_act[i]=self.e_act
for i in range(self.N-1,0,-1):
segment_tree[i]=self.f(segment_tree[i<<1],segment_tree[i<<1|1])
return '['+', '.join(map(str,[self.operate(x,a) for x,a in zip(segment_tree[self.N:],segment_tree_act[self.N:])]))+']'
N=int(readline())
mod=10**9+7
S=list(map(int,readline().split()))
C=list(map(int,readline().split()))
edges=[]
for _ in range(N-1):
A,B=map(int,readline().split())
A-=1;B-=1
edges.append((A,B))
G=Graph(N,edges=edges)
G.Build_HLD(0)
def f(tpl0,tpl1):
s0,c0=tpl0
s1,c1=tpl1
s=(s0+s1)%mod
c=(c0+c1)%mod
return (s,c)
e=(0,0)
def f_act(a,b):
return (a+b)%mod
e_act=0
def operate(tpl,a):
s,c=tpl
return ((s+c*a)%mod,c)
LST=Lazy_Segment_Tree(N,f,e,f_act,e_act,operate,[(S[i],C[i]) for i in G.hld_tour])
Q=int(readline())
for _ in range(Q):
data=map(int,readline().split())
if next(data)==0:
X,Y,Z=data
X-=1
Y-=1
for a,b in G.HLD(X,Y):
if a>b:
a,b=b,a
LST.Operate_Range(Z,a,b)
else:
X,Y=data
ans=0
X-=1
Y-=1
for a,b in G.HLD(X,Y):
if a>b:
a,b=b,a
ans+=LST.Fold(a,b)[0]
ans%=mod
print(ans)
vwxyz