結果

問題 No.1975 Zigzag Sequence
ユーザー ks2mks2m
提出日時 2022-06-10 23:06:17
言語 Java21
(openjdk 21)
結果
WA  
実行時間 -
コード長 2,989 bytes
コンパイル時間 2,874 ms
コンパイル使用メモリ 89,128 KB
実行使用メモリ 56,664 KB
最終ジャッジ日時 2024-09-21 06:47:55
合計ジャッジ時間 18,538 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 65 ms
37,544 KB
testcase_01 AC 65 ms
37,556 KB
testcase_02 AC 67 ms
37,500 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 AC 66 ms
37,596 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.PriorityQueue;

public class Main {
	public static void main(String[] args) throws Exception {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		int n = Integer.parseInt(br.readLine());
		String[] sa = br.readLine().split(" ");
		Obj[] arr = new Obj[n];
		for (int i = 0; i < n; i++) {
			Obj o = new Obj();
			o.i = i;
			o.a = Integer.parseInt(sa[i]);
			arr[i] = o;
		}
		br.close();

		PriorityQueue<Obj> que1 = new PriorityQueue<>((o1, o2) -> o1.a - o2.a);
		PriorityQueue<Obj> que2 = new PriorityQueue<>((o1, o2) -> o2.a - o1.a);
		for (Obj o : arr) {
			que1.add(o);
			que2.add(o);
		}

		int mod = 1000000007;
		long[] p = new long[n + 1];
		p[0] = 1;
		for (int i = 1; i < p.length; i++) {
			p[i] = p[i - 1] * 2 % mod;
		}

		long ans = 0;
		FenwickTree ft1 = new FenwickTree(n);
		FenwickTree ft2 = new FenwickTree(n);
		while (!que1.isEmpty()) {
			Obj o = que1.poll();
			long v1 = ft1.sum(o.i) % mod;
			long v2 = ft2.sum(o.i + 1, n) % mod;
			ans += v1 * v2 % mod;
			ft1.add(o.i, p[o.i]);
			ft2.add(o.i, p[n - 1 - o.i]);
		}
		ft1 = new FenwickTree(n);
		ft2 = new FenwickTree(n);
		while (!que2.isEmpty()) {
			Obj o = que2.poll();
			long v1 = ft1.sum(o.i) % mod;
			long v2 = ft2.sum(o.i + 1, n) % mod;
			ans += v1 * v2 % mod;
			ft1.add(o.i, p[o.i]);
			ft2.add(o.i, p[n - 1 - o.i]);
		}
		System.out.println(ans % mod);
	}

	static class Obj {
		int i, a;
	}
}

class FenwickTree {
	private int n;
	private long[] data;

	/**
	 * 長さnの配列(a[0]~a[n-1])を作る。初期値は全て0。<br>
	 * O(n)
	 * 
	 * @param n 配列の長さ
	 */
	public FenwickTree(int n) {
		this.n = n;
		data = new long[n];
	}

	/**
	 * 初期データを元にFenwick Treeを構成する。<br>
	 * O(n)
	 * 
	 * @param data 初期データ
	 */
	public FenwickTree(long[] data) {
		this(data.length);
		build(data);
	}

	/**
	 * a[p] += x を行う。<br>
	 * O(log n)
	 * 
	 * @param p 加算位置(0≦p<n)
	 * @param x 加算値
	 */
	void add(int p, long x) {
		assert 0 <= p && p < n : "p=" + p;

		p++;
		while (p <= n) {
			data[p - 1] += x;
			p += p & -p;
		}
	}

	/**
	 * a[l] + ... + a[r-1] を返す。<br>
	 * O(log n)
	 * 
	 * @param l 開始位置(含む)    (0≦l≦r≦n)
	 * @param r 終了位置(含まない)(0≦l≦r≦n)
	 */
	long sum(int l, int r) {
		assert 0 <= l && l <= r && r <= n : "l=" + l + ", r=" + r;

		return sum(r) - sum(l);
	}

	/**
	 * a[0] + ... + a[r-1] を返す。<br>
	 * O(log n)
	 * 
	 * @param r 終了位置(含まない)(0≦r≦n)
	 */
	long sum(int r) {
		assert 0 <= r && r <= n : "r=" + r;

		long s = 0;
		while (r > 0) {
			s += data[r - 1];
			r -= r & -r;
		}
		return s;
	}

	private void build(long[] dat) {
		System.arraycopy(dat, 0, data, 0, n);
		for (int i = 1; i <= n; i++) {
			int p = i + (i & -i);
			if (p <= n) {
				data[p - 1] += data[i - 1];
			}
		}
	}
}
0