結果
問題 | No.1973 Divisor Sequence |
ユーザー | Shirotsume |
提出日時 | 2022-06-11 00:12:27 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 2,105 bytes |
コンパイル時間 | 178 ms |
コンパイル使用メモリ | 82,132 KB |
実行使用メモリ | 650,948 KB |
最終ジャッジ日時 | 2024-09-21 07:21:20 |
合計ジャッジ時間 | 3,920 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 42 ms
59,264 KB |
testcase_01 | AC | 42 ms
53,632 KB |
testcase_02 | MLE | - |
testcase_03 | AC | 175 ms
122,092 KB |
testcase_04 | AC | 1,481 ms
317,340 KB |
testcase_05 | AC | 368 ms
214,412 KB |
testcase_06 | AC | 1,597 ms
405,620 KB |
testcase_07 | AC | 311 ms
188,196 KB |
testcase_08 | AC | 913 ms
315,728 KB |
testcase_09 | AC | 1,360 ms
356,752 KB |
testcase_10 | AC | 1,573 ms
330,684 KB |
testcase_11 | AC | 271 ms
164,196 KB |
testcase_12 | AC | 1,241 ms
330,108 KB |
testcase_13 | AC | 427 ms
230,588 KB |
testcase_14 | AC | 878 ms
286,416 KB |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | AC | 1,472 ms
369,724 KB |
testcase_18 | AC | 150 ms
108,308 KB |
testcase_19 | AC | 1,891 ms
463,796 KB |
testcase_20 | AC | 383 ms
199,208 KB |
testcase_21 | TLE | - |
testcase_22 | AC | 1,899 ms
464,128 KB |
testcase_23 | AC | 1,044 ms
362,336 KB |
testcase_24 | MLE | - |
ソースコード
from collections import Counter import sys input = lambda: sys.stdin.readline().rstrip() ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) INF = 2 ** 63 - 1 mod = 10 ** 9 + 7 from math import gcd def isprime(n): if n <= 2: return n == 2 if n % 2 == 0: return False s = 0 t = n - 1 while t % 2 == 0: s += 1 t //= 2 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37]: if a >= n: break x = pow(a, t, n) if x == 1 or x == n - 1: continue for _ in range(s): x = (x * x) % n if x == n - 1: break if x == n - 1: continue return False return True def Pollad(N): if N % 2 == 0: return 2 if isprime(N): return N def f(x): return (x * x + 1) % N step = 0 while True: step += 1 x = step y = f(x) while True: p = gcd(y - x + N, N) if p == 0 or p == N: break if p != 1: return p x = f(x) y = f(f(y)) def Primefact(N): if N == 1: return [] q = [] q.append(N) ret = [] while q: now = q.pop() if now == 1: continue p = Pollad(now) if p == now: ret.append(p) else: q.append(p) q.append(now // p) return ret n, m = mi() D = Counter(Primefact(m)) def solve(n, c): dp = [[0] * 60 for _ in range(n)] for i in range(c + 1): dp[0][i] = 1 for i in range(n - 1): DP = [0] * 60 DP[0] = dp[i][0] for j in range(59): DP[j + 1] += DP[j] + dp[i][j + 1] DP[j + 1] %= mod for j in range(60): if j > c: break dp[i + 1][j] += DP[c - j] dp[i + 1][j] %= mod return sum(dp[n - 1]) % mod ans = 1 for v, c in D.items(): ans *= solve(n, c) ans %= mod print(ans)