結果
問題 | No.36 素数が嫌い! |
ユーザー | McGregorsh |
提出日時 | 2022-06-13 15:46:22 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,488 bytes |
コンパイル時間 | 324 ms |
コンパイル使用メモリ | 82,476 KB |
実行使用メモリ | 89,344 KB |
最終ジャッジ日時 | 2024-09-25 09:56:45 |
合計ジャッジ時間 | 5,673 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 140 ms
89,152 KB |
testcase_01 | AC | 133 ms
88,964 KB |
testcase_02 | AC | 135 ms
88,872 KB |
testcase_03 | WA | - |
testcase_04 | AC | 135 ms
88,972 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 136 ms
89,060 KB |
testcase_08 | AC | 136 ms
88,932 KB |
testcase_09 | AC | 133 ms
88,940 KB |
testcase_10 | AC | 136 ms
88,964 KB |
testcase_11 | AC | 175 ms
89,044 KB |
testcase_12 | AC | 263 ms
88,860 KB |
testcase_13 | AC | 261 ms
89,116 KB |
testcase_14 | AC | 135 ms
89,060 KB |
testcase_15 | AC | 133 ms
88,912 KB |
testcase_16 | AC | 135 ms
88,704 KB |
testcase_17 | AC | 136 ms
88,896 KB |
testcase_18 | AC | 136 ms
88,996 KB |
testcase_19 | AC | 136 ms
88,896 KB |
testcase_20 | AC | 137 ms
88,952 KB |
testcase_21 | AC | 136 ms
89,036 KB |
testcase_22 | AC | 137 ms
89,044 KB |
testcase_23 | AC | 137 ms
88,820 KB |
testcase_24 | AC | 134 ms
89,028 KB |
testcase_25 | AC | 135 ms
88,732 KB |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
ソースコード
###ある数が素数かどうかの判定### import math def is_prime(n): sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if n % i == 0: return False return True ###N以下の素数列挙### import math def sieve_of_eratosthenes(n): prime = [True for i in range(n+1)] prime[0] = False prime[1] = False sqrt_n = math.ceil(math.sqrt(n)) for i in range(2, sqrt_n): if prime[i]: for j in range(2*i, n+1, i): prime[j] = False return prime ###N以上K以下の素数列挙### import math def segment_sieve(a, b): sqrt_b = math.ceil(math.sqrt(b)) prime_small = [True for i in range(sqrt_b)] prime = [True for i in range(b-a+1)] for i in range(2, sqrt_b): if prime_small[i]: for j in range(2*i, sqrt_b, i): prime_small[j] = False for j in range((a+i-1)//i*i, b+1, i): #print('j: ', j) prime[j-a] = False return prime ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr import sys, re from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d sys.setrecursionlimit(10 ** 6) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 def main(): n = int(input()) if is_prime(n): print('NO') else: print('YES') if __name__ == '__main__': main()