結果

問題 No.1528 Not 1
ユーザー McGregorshMcGregorsh
提出日時 2022-07-20 18:55:38
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 4,020 bytes
コンパイル時間 216 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 140,800 KB
最終ジャッジ日時 2024-07-02 13:53:27
合計ジャッジ時間 6,681 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 157 ms
89,344 KB
testcase_01 AC 254 ms
132,352 KB
testcase_02 AC 195 ms
101,120 KB
testcase_03 AC 209 ms
107,904 KB
testcase_04 AC 251 ms
132,352 KB
testcase_05 AC 182 ms
92,288 KB
testcase_06 AC 222 ms
116,096 KB
testcase_07 AC 256 ms
134,656 KB
testcase_08 AC 211 ms
109,824 KB
testcase_09 AC 187 ms
96,000 KB
testcase_10 AC 211 ms
110,208 KB
testcase_11 WA -
testcase_12 RE -
testcase_13 RE -
testcase_14 AC 155 ms
89,472 KB
testcase_15 WA -
testcase_16 RE -
testcase_17 RE -
testcase_18 AC 273 ms
140,672 KB
testcase_19 AC 266 ms
140,800 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr



import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353


###関数コピーしたか?###
def main():
   
   n = int(input())
   
   so = sieve_of_eratosthenes(n)
   sosuu = []
   for i in range(n+1):
   	  if so[i]:
   	  	  sosuu.append(i)
   
   count = set()
   log = [] 
   for i in range(len(sosuu)-1):
   	  num = sosuu[i]
   	  cou = 0
   	  for j in range(num, n, num):
   	  	  if j % sosuu[i+1] == 0 and cou == 0:
   	  	  	  cou += 1
   	  	  	  baisu = j
   	  	  else:
   	  	  	  if j not in count:
   	  	  	  	  log.append(j)
   	  	  	  count.add(j)
   	  if baisu not in count:
   	  	  log.append(baisu)
   	  	  count.add(baisu)
   
   if len(log) < ceil(n/2):
   	  print(-1)
   else:
   	  print(*log[:ceil(n/2)])
   
   
if __name__ == '__main__':
    main()


0