結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | nonamae |
提出日時 | 2022-07-21 01:06:54 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,062 bytes |
コンパイル時間 | 1,846 ms |
コンパイル使用メモリ | 203,936 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-02 14:14:06 |
合計ジャッジ時間 | 2,445 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
ソースコード
#include <bits/stdc++.h> using i32 = std::int32_t; using i64 = std::int64_t; using i128 = __int128_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using u128 = __uint128_t; int jacobi_symbol(i64 a, u64 n) { u64 t; int j = 1; while (a) { if (a < 0) { a = -a; if ((n & 3) == 3) j = -j; } int s = __builtin_ctzll(a); a >>= s; if (((n & 7) == 3 || (n & 7) == 5) && (s & 1)) j = -j; if ((a & n & 3) == 3) j = -j; t = a, a = n, n = t; a %= n; if (u64(a) > n / 2) a -= n; } return n == 1 ? j : 0; } struct Runtime_modint64 { using m64 = u64; inline static m64 one, r2, n, mod; m64 x; static void set_mod(u64 m) { mod = m; one = (u64)-1ull % m + 1; r2 = (u128)(i128)-1 % m + 1; u64 nn = m; for (int _ = 0; _ < 5; ++_) nn *= 2 - nn * m; n = nn; } static m64 reduce(u128 a) { u64 y = (u64(a >> 64)) - (u64((u128(u64(a) * n) * mod) >> 64)); return i64(y) < 0 ? y + mod : y; } Runtime_modint64() : x(0) { } Runtime_modint64(u64 x) : x(reduce(u128(x) * r2)) { } Runtime_modint64(u64 x, bool is_montgomery) : x(is_montgomery ? x : reduce(u128(x) * r2)) { } u64 get_val() const { return reduce(u128(x)); } u64 get_raw() const { return x; } Runtime_modint64 &operator+=(Runtime_modint64 y) { x += y.x - mod; if (i64(x) < 0) x += mod; return *this; } Runtime_modint64 &operator-=(Runtime_modint64 y) { if (i64(x -= y.x) < 0) x += 2 * mod; return *this; } Runtime_modint64 &operator*=(Runtime_modint64 y) { x = reduce(u128(x) * y.x); return *this; } Runtime_modint64 &operator/=(Runtime_modint64 y) { return *this *= y.inv(); } Runtime_modint64 &operator++() { if (x + one >= mod) x = x + one - mod; else x += one; return *this; } Runtime_modint64 &operator--() { if (x < one) x = mod + x - one; else x -= one; return *this; } Runtime_modint64 &operator>>=(int k) { x >>= k; return *this; } Runtime_modint64 &operator<<=(int k) { x <<= k; return *this; } Runtime_modint64 operator+(Runtime_modint64 y) const { return Runtime_modint64(*this) += y; } Runtime_modint64 operator-(Runtime_modint64 y) const { return Runtime_modint64(*this) -= y; } Runtime_modint64 operator*(Runtime_modint64 y) const { return Runtime_modint64(*this) *= y; } Runtime_modint64 operator/(Runtime_modint64 y) const { return Runtime_modint64(*this) /= y; } Runtime_modint64 operator-() const { return Runtime_modint64() - Runtime_modint64(*this); } Runtime_modint64 operator++(int) { Runtime_modint64 temp = *this; ++*this; return temp; } Runtime_modint64 operator--(int) { Runtime_modint64 temp = *this; --*this; return temp; } Runtime_modint64 operator>>(int k) const { return Runtime_modint64(*this) >>= k; } Runtime_modint64 operator<<(int k) const { return Runtime_modint64(*this) <<= k; } Runtime_modint64 pow(u64 k) { Runtime_modint64 y = 1, z = *this; for ( ; k; k >>= 1, z *= z) if (k & 1) y *= z; return y; } Runtime_modint64 inv() { return (*this).pow(mod - 2); } bool operator==(Runtime_modint64 y) const { return (x >= mod ? x - mod : x) == (y.x >= mod ? y.x - mod : y.x); } bool operator!=(Runtime_modint64 y) const { return not operator==(y); } bool operator<(const Runtime_modint64& other) { return (*this).get_val() < other.get_val(); } bool operator<=(const Runtime_modint64& other) { return (*this).get_val() <= other.get_val(); } bool operator>(const Runtime_modint64& other) { return (*this).get_val() > other.get_val(); } bool operator>=(const Runtime_modint64& other) { return (*this).get_val() >= other.get_val(); } }; int is_prime(u64 n) { { if (n <= 1) return 0; if (n <= 3) return 1; if (!(n & 1)) return 0; } Runtime_modint64::set_mod(n); Runtime_modint64 o(1); { u64 d = (n - 1) << __builtin_clzll(n - 1); Runtime_modint64 t = o << 1; for (d <<= 1; d; d <<= 1) { t *= t; if (d >> 63) t <<= 1; } if (t != o) { u64 x = (n - 1) & -(n - 1); Runtime_modint64 mone = -o; for (x >>= 1; t != mone; x >>= 1) { if (x == 0) return 0; t *= t; } } } { i64 D_ = 5; for (int i = 0; jacobi_symbol(D_, n) != -1 && i < 64; i++) { if (i == 32) { u32 k = round(sqrtl(n)); if (k * k == n) return 0; } if (i & 1) D_ -= 2; else D_ += 2; D_ = -D_; } Runtime_modint64 Q(D_ < 0 ? (1 - D_) / 4 % n : n - (D_ - 1) / 4 % n); Runtime_modint64 u, v, Qn; u64 k = (n + 1) << __builtin_clzll(n + 1); u = o; v = o; Qn = Q; D_ %= (i64)n; Runtime_modint64 D(D_ < 0 ? n + D_ : D_); for (k <<= 1; k; k <<= 1) { u *= v; v = (v * v) - (Qn + Qn); Qn *= Qn; if (k >> 63) { u64 uu = u.get_raw() + v.get_raw(); if (uu & 1) uu += n; uu >>= 1; v = D * u + v; v >>= 1; u = uu; Qn *= Q; } } if (u.get_val() == 0 || v.get_val() == 0) return 1; u64 x = (n + 1) & ~n; for (x >>= 1; x; x >>= 1) { u *= v; v = (v * v) - (Qn + Qn); if (v.get_val() == 0) return 1; Qn *= Qn; } } return 0; } int main() { i32 T; scanf("%d", &T); while (T--) { u64 x; scanf("%llu", &x); printf("%llu %d\n", x, is_prime(x)); } }