結果
| 問題 |
No.2062 Sum of Subset mod 999630629
|
| コンテスト | |
| ユーザー |
kwm_t
|
| 提出日時 | 2022-08-26 23:27:44 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,890 bytes |
| コンパイル時間 | 4,166 ms |
| コンパイル使用メモリ | 259,920 KB |
| 最終ジャッジ日時 | 2025-01-31 05:48:22 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 10 WA * 2 TLE * 17 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
//using mint = modint1000000007;
//const int mod = 1000000007;
using mint = modint998244353;
const int mod = 998244353;
//const int INF = 1e9;
//const long long LINF = 1e18;
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep2(i,l,r)for(int i=(l);i<(r);++i)
#define rrep(i, n) for (int i = (n-1); i >= 0; --i)
#define rrep2(i,l,r)for(int i=(r-1);i>=(l);--i)
#define all(x) (x).begin(),(x).end()
#define allR(x) (x).rbegin(),(x).rend()
#define endl "\n"
#define P pair<int,int>
template<typename A, typename B> inline bool chmax(A & a, const B & b) { if (a < b) { a = b; return true; } return false; }
template<typename A, typename B> inline bool chmin(A & a, const B & b) { if (a > b) { a = b; return true; } return false; }
/*template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{ (*this)[0].inv() };
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2 * m));
F r(res);
f.resize(2 * m), internal::butterfly(f);
r.resize(2 * m), internal::butterfly(r);
rep(i, 2 * m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m), internal::butterfly(f);
rep(i, 2 * m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2 * m).inv(); iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return { res.begin(), res.begin() + d };
}
// // fast: FMT-friendly modulus only
// F &operator*=(const F &g) {
// int n = (*this).size();
// *this = convolution(*this, g);
// (*this).resize(n);
// return *this;
// }
// F &operator/=(const F &g) {
// int n = (*this).size();
// *this = convolution(*this, g.inv(n));
// (*this).resize(n);
// return *this;
// }
// // naive
// F &operator*=(const F &g) {
// int n = (*this).size(), m = g.size();
// drep(i, n) {
// (*this)[i] *= g[0];
// rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
// }
// return *this;
// }
// F &operator/=(const F &g) {
// assert(g[0] != T(0));
// T ig0 = g[0].inv();
// int n = (*this).size(), m = g.size();
// rep(i, n) {
// rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
// (*this)[i] *= ig0;
// }
// return *this;
// }
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto[d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto[d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) drep(i, n - d) (*this)[i + d] += (*this)[i];
else if (c == T(-1)) drep(i, n - d) (*this)[i + d] -= (*this)[i];
else drep(i, n - d) (*this)[i + d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) rep(i, n - d) (*this)[i + d] -= (*this)[i];
else if (c == T(-1)) rep(i, n - d) (*this)[i + d] += (*this)[i];
else rep(i, n - d) (*this)[i + d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;*/
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
vector<int>a(n);
int sum = 0;
rep(i, n) {
cin >> a[i];
sum += a[i];
}
mint ans = 0;
rep(i, n) {
mint sub = pow_mod(2, n - 1, mod);
sub *= a[i];
ans += sub;
}
if (sum >= 999630629) {
int over = sum - 999630629;
vector<mint>f = { 1 };
rep(i, n) {
vector<mint> g = { 1,a[i] };
auto h = convolution(f, g);
if (h.size() > (over + 1))h.resize(over + 1);
swap(f, h);
}
rep(i, f.size())ans -= f[i] * 999630629;
}
cout << ans.val() << endl;
return 0;
}
kwm_t