結果
| 問題 | No.2062 Sum of Subset mod 999630629 |
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-09-07 13:55:27 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 47,377 bytes |
| 記録 | |
| コンパイル時間 | 2,609 ms |
| コンパイル使用メモリ | 221,344 KB |
| 最終ジャッジ日時 | 2025-02-07 03:18:42 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 TLE * 7 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define CIN( LL , A ) LL A; cin >> A
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( ll VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; return 0
// 以下、自分のライブラリ(https://github.com/p-adic/cpp)よりソースコードをコピーして編集している。
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept;
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept
{
if( M == 0 ){
return 0;
}
const INT M_abs = ( M > 0 ? M : -M );
if( n < 0 ){
const INT n_abs = -n;
const INT res = n_abs % M_abs;
return res == 0 ? res : M_abs - res;
}
return n % M_abs;
}
template <typename T>
using VLArray = list<T>;
using INT_TYPE_FOR_MOD = long long int;
// ここをtempate <typename INT , INT M>などにしてしまうとoperator+などを呼び出す際に型推論に失敗する。整数型を変えたい時はINT_TYPE_FOR_MODの型エイリアスを変更する。
template <INT_TYPE_FOR_MOD M>
class Mod
{
protected:
INT_TYPE_FOR_MOD m_n;
INT_TYPE_FOR_MOD m_inv;
public:
inline Mod() noexcept;
inline Mod( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod( const Mod<M>& n ) noexcept;
inline Mod<M>& operator=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator=( const Mod<M>& n ) noexcept;
Mod<M>& operator+=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator+=( const Mod<M>& n ) noexcept;
inline Mod<M>& operator-=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator-=( const Mod<M>& n ) noexcept;
Mod<M>& operator*=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator*=( const Mod<M>& n ) noexcept;
// INT_TYPE_FOR_MODでの割り算ではないことに注意
virtual Mod<M>& operator/=( const INT_TYPE_FOR_MOD& n );
virtual Mod<M>& operator/=( const Mod<M>& n );
Mod<M>& operator%=( const INT_TYPE_FOR_MOD& n );
inline Mod<M>& operator%=( const Mod<M>& n );
inline Mod<M> operator-() const noexcept;
// 前置++/--を使うつもりがないので後置++/--と同じものとして定義する
inline Mod<M>& operator++() noexcept;
inline Mod<M>& operator++( int ) noexcept;
inline Mod<M>& operator--() noexcept;
inline Mod<M>& operator--( int ) noexcept;
inline const INT_TYPE_FOR_MOD& Represent() const noexcept;
void Invert() noexcept;
bool CheckInvertible() noexcept;
bool IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
bool IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
};
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> Inverse( const Mod<M>& n );
template <INT_TYPE_FOR_MOD M> Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method );
// M乗が1になるよう定義されていることに注意
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method );
// ../Power/a_Body.hppにて定義
template <typename T> inline T Square( const T& t );
template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t );
template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept;
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m );
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod() noexcept : m_n( 0 ) , m_inv( M ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const INT_TYPE_FOR_MOD& n ) noexcept : m_n( Residue<INT_TYPE_FOR_MOD>( M , n ) ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const Mod<M>& n ) noexcept : m_n( n.m_n ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator=( Mod<M>( n ) ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator=( const Mod<M>& n ) noexcept
{
m_n = n.m_n;
m_inv = n.m_inv;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator+=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n + n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator+=( const Mod<M>& n ) noexcept { return operator+=( n.m_n ); };
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator+=( -n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const Mod<M>& n ) noexcept { return operator-=( n.m_n ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const Mod<M>& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n.m_n );
if( m_inv == 0 || n.m_inv == 0 ){
m_inv = 0;
} else if( m_inv == M || n.m_inv == M ){
m_inv = M;
} else {
Residue<INT_TYPE_FOR_MOD>( M , m_inv * n.m_inv );
}
return *this;
}
// 仮想関数なのでinline指定しない。
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const INT_TYPE_FOR_MOD& n )
{
return operator/=( Mod<M>( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const Mod<M>& n )
{
return operator*=( Inverse( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator%=( const INT_TYPE_FOR_MOD& n )
{
m_n %= Residue<INT_TYPE_FOR_MOD>( M , n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator%=( const Mod<M>& n ) { return operator%=( n.m_n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Mod<M>::operator-() const noexcept { return Mod<M>( 0 ).operator-=( *this ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++() noexcept { return operator+=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++( int ) noexcept { return operator++(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--() noexcept { return operator-=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--( int ) noexcept { return operator-=(); }
template <INT_TYPE_FOR_MOD M> inline const INT_TYPE_FOR_MOD& Mod<M>::Represent() const noexcept { return m_n; }
template <INT_TYPE_FOR_MOD M>
void Mod<M>::Invert() noexcept
{
if( CheckInvertible() ){
INT_TYPE_FOR_MOD i = m_inv;
m_inv = m_n;
m_n = i;
} else {
// m_nがMになるのはここの処理に限るのでRepresent()の値を参照することで例外処理可能
m_n = M;
m_inv = M;
}
return;
}
template <INT_TYPE_FOR_MOD M>
bool Mod<M>::CheckInvertible() noexcept
{
if( m_inv == 0 ){
LazyEvaluationOfModularInverse( M , m_n , m_inv );
}
return m_inv != M;
}
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n < Residue<INT_TYPE_FOR_MOD>( M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n > Residue<INT_TYPE_FOR_MOD>( M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 == Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 ) == n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() == n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0.IsSmallerThan( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1.IsBiggerThan( n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() < n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n += n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 + n0; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 + n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 + ( -n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 - n1.Represent() ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 - n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 * n0; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) { return n0 / Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) / n1; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 )
{
auto n = n0;
n /= n1;
return n;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 )
{
auto n = n0;
n %= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) % n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 ) { return n0 % n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> Inverse( const Mod<M>& n )
{
auto n_copy = n;
n_copy.Invert();
return n_copy;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method )
{
if( p >= 0 ){
return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p , 1 , true , true , method );
}
return Inverse( Power<M>( n , -p , method ) );
}
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method ) { return p == 0 ? 1 : n; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method ) { return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p.Represent() , method ); }
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method ) { return p == 0 ? 1 : n; }
template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t ) { return t; }
template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept { return to_string( n.Represent() ) + " + MZ"; }
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m )
{
static VLArray<INT_TYPE_FOR_MOD> memory_M{};
// vectorでなくVLArrayだと引数が小さい順に呼び出した時の計算量がO(1)からO(n)に跳ね上がってしまう。
static VLArray<vector<INT_TYPE_FOR_MOD> > memory_inverse{};
auto itr_M = memory_M.begin() , end_M = memory_M.end();
auto itr_inverse = memory_inverse.begin();
vector<INT_TYPE_FOR_MOD>* p_inverse = nullptr;
while( itr_M != end_M && p_inverse == nullptr ){
if( *itr_M == M ){
p_inverse = &( *itr_inverse );
}
itr_M++;
itr_inverse++;
}
if( p_inverse == nullptr ){
memory_M.push_front( M );
memory_inverse.push_front( vector<INT_TYPE_FOR_MOD>() );
p_inverse = &( memory_inverse.front() );
p_inverse->push_back( M );
}
const INT_TYPE_FOR_MOD size = p_inverse->size();
for( INT_TYPE_FOR_MOD i = size ; i <= n ; i++ ){
p_inverse->push_back( 0 );
}
INT_TYPE_FOR_MOD& n_inv = ( *p_inverse )[n];
if( n_inv != 0 ){
m = n_inv;
return;
}
const INT_TYPE_FOR_MOD M_abs = M >= 0 ? M : -M;
const INT_TYPE_FOR_MOD n_sub = M_abs % n;
INT_TYPE_FOR_MOD n_sub_inv = ( *p_inverse )[n_sub];
if( n_sub_inv == 0 ){
LazyEvaluationOfModularInverse( M , n_sub , n_sub_inv );
}
if( n_sub_inv != M ){
n_inv = M_abs - ( ( n_sub_inv * ( M_abs / n ) ) % M_abs );
m = n_inv;
return;
}
for( INT_TYPE_FOR_MOD i = 1 ; i < M_abs ; i++ ){
if( ( n * i ) % M_abs == 1 ){
n_inv = i;
m = n_inv;
return;
}
}
n_inv = M;
m = n_inv;
return;
}
template <typename T> inline constexpr const uint LimitOfPowerForFFT;
template <typename T> inline const T ( &PrimitiveRootOfTwoForFFT() noexcept )[LimitOfPowerForFFT<T>];
template <typename T> inline const T ( &InversePrimitiveRootOfTwoForFFT() noexcept )[LimitOfPowerForFFT<T>];
template <typename T> vector<T> FFT( const vector<T>& f , const uint& N );
template <typename T> vector<T> FFT( const vector<T>& f , const uint& two_power , const uint& exponent );
template <typename T> vector<T> IFFT( const vector<T>& f , const uint& N );
template <typename T> vector<T> IFFT( const vector<T>& f , const uint& two_power , const T& two_power_inv , const uint& exponent );
template <> inline constexpr const uint LimitOfPowerForFFT<Mod<998244353> > = 24;
template <> inline const Mod<998244353> ( &PrimitiveRootOfTwoForFFT() noexcept )[LimitOfPowerForFFT<Mod<998244353> >]
{
static const Mod<998244353> PRT[ LimitOfPowerForFFT<Mod<998244353> > ] =
{
Mod<998244353>( 1 ) ,
Mod<998244353>( 998244352 ) ,
Mod<998244353>( 911660635 ) ,
Mod<998244353>( 625715529 ) ,
Mod<998244353>( 373294451 ) ,
Mod<998244353>( 827987769 ) ,
Mod<998244353>( 280333251 ) ,
Mod<998244353>( 581015842 ) ,
Mod<998244353>( 628092333 ) ,
Mod<998244353>( 300892551 ) ,
Mod<998244353>( 586046298 ) ,
Mod<998244353>( 615001099 ) ,
Mod<998244353>( 318017948 ) ,
Mod<998244353>( 64341522 ) ,
Mod<998244353>( 106061068 ) ,
Mod<998244353>( 304605202 ) ,
Mod<998244353>( 631920086 ) ,
Mod<998244353>( 857779016 ) ,
Mod<998244353>( 841431251 ) ,
Mod<998244353>( 805775211 ) ,
Mod<998244353>( 390359979 ) ,
Mod<998244353>( 923521 ) ,
Mod<998244353>( 961 ) ,
Mod<998244353>( 31 )
};
return PRT;
}
template <> inline const Mod<998244353> ( &InversePrimitiveRootOfTwoForFFT() noexcept )[LimitOfPowerForFFT<Mod<998244353> >]
{
static const Mod<998244353> PRT[ LimitOfPowerForFFT<Mod<998244353> > ] =
{
Mod<998244353>( 1 ) ,
Mod<998244353>( 998244352 ) ,
Mod<998244353>( 86583718 ) ,
Mod<998244353>( 488723995 ) ,
Mod<998244353>( 369330050 ) ,
Mod<998244353>( 543653592 ) ,
Mod<998244353>( 382946991 ) ,
Mod<998244353>( 844956623 ) ,
Mod<998244353>( 91420391 ) ,
Mod<998244353>( 433414612 ) ,
Mod<998244353>( 288894979 ) ,
Mod<998244353>( 260490556 ) ,
Mod<998244353>( 857007890 ) ,
Mod<998244353>( 736054570 ) ,
Mod<998244353>( 474649464 ) ,
Mod<998244353>( 948509906 ) ,
Mod<998244353>( 114942468 ) ,
Mod<998244353>( 962405921 ) ,
Mod<998244353>( 667573957 ) ,
Mod<998244353>( 46809892 ) ,
Mod<998244353>( 304321983 ) ,
Mod<998244353>( 30429817 ) ,
Mod<998244353>( 293967900 ) ,
Mod<998244353>( 128805723 )
};
return PRT;
}
template <typename T> static vector<T> FFT_Body( const vector<T>& f , const uint& two_power , const uint& exponent , const uint& start , const uint& depth , const T ( &PRT )[LimitOfPowerForFFT<T>] );
template <typename T>
vector<T> FFT( const vector<T>& f , const uint& N )
{
uint two_power = 1;
uint exponent = 0;
while( N > two_power ){
two_power *= 2;
exponent++;
}
return FFT<T>( f , two_power , exponent );
}
template <typename T>
vector<T> FFT( const vector<T>& f , const uint& two_power , const uint& exponent )
{
const uint size = f.size();
if( size == two_power ){
return FFT_Body<T>( f , two_power , exponent , 0 , 1 , PrimitiveRootOfTwoForFFT<T>() );
}
vector<T> f_copy = f;
const T zero{};
for( uint i = size ; i < two_power ; i++ ){
f_copy.push_back( zero );
}
return FFT_Body<T>( f_copy , two_power , exponent , 0 , 1 , PrimitiveRootOfTwoForFFT<T>() );
}
template <typename T>
vector<T> IFFT( const vector<T>& f , const uint& N )
{
uint two_power = 1;
T two_power_inv{ 1 };
uint exponent = 0;
while( N > two_power ){
two_power *= 2;
two_power_inv /= 2;
exponent++;
}
return IFFT<T>( f , two_power , two_power_inv , exponent );
}
template <typename T>
vector<T> IFFT( const vector<T>& f , const uint& two_power , const T& two_power_inv , const uint& exponent )
{
vector<T> answer;
const uint size = f.size();
if( size == two_power ){
answer = move( FFT_Body<T>( f , two_power , exponent , 0 , 1 , InversePrimitiveRootOfTwoForFFT<T>() ) );
} else {
vector<T> f_copy = f;
const T zero{};
for( uint i = size ; i < two_power ; i++ ){
f_copy.push_back( zero );
}
answer = move( FFT_Body<T>( f_copy , two_power , exponent , 0 , 1 , InversePrimitiveRootOfTwoForFFT<T>() ) );
}
for( uint i = 0 ; i < two_power ; i++ ){
answer[i] *= two_power_inv;
}
return answer;
}
template <typename T>
static vector<T> FFT_Body( const vector<T>& f , const uint& two_power , const uint& exponent , const uint& start , const uint& depth , const T ( &PRT )[LimitOfPowerForFFT<T>] )
{
vector<T> answer( two_power );
if( two_power == 1 ){
answer[0] = ( start < f.size() ? f[ start ] : 0 );
return answer;
}
const uint two_power_sub = two_power / 2;
const uint exponent_sub = exponent - 1;
const uint depth_sub = depth * 2;
vector<T> answer_sub0{ move( FFT_Body<T>( f , two_power_sub , exponent_sub , start , depth_sub , PRT ) ) };
vector<T> answer_sub1{ move( FFT_Body<T>( f , two_power_sub , exponent_sub , start + depth , depth_sub , PRT ) ) };
const T& zeta = PRT[exponent];
T zeta_power{ 1 };
for( uint i = 0 ; i < two_power ; i++ ){
const uint i_sub = i % two_power_sub;
answer[i] = answer_sub0[i_sub] + zeta_power * answer_sub1[i_sub];
zeta_power *= zeta;
}
return answer;
}
template <typename T>
class Polynomial
{
protected:
vector<T> m_f;
// m_fのsize
uint m_size;
bool m_no_redundant_zero;
public:
inline Polynomial();
inline Polynomial( const T& t );
inline Polynomial( const Polynomial<T>& f );
inline Polynomial( const uint& i , const T& t );
Polynomial<T>& operator=( const T& t );
Polynomial<T>& operator=( const Polynomial<T>& f );
inline const T& operator[]( const uint& i ) const;
inline T& operator[]( const uint& i );
inline Polynomial<T>& operator+=( const T& t );
Polynomial<T>& operator+=( const Polynomial<T>& f );
inline Polynomial<T>& operator-=( const T& t );
Polynomial<T>& operator-=( const Polynomial<T>& f );
Polynomial<T>& operator*=( const T& t );
Polynomial<T>& operator*=( const Polynomial<T>& f );
Polynomial<T>& operator/=( const T& t );
Polynomial<T>& operator%=( const T& t );
inline Polynomial<T> operator-() const;
inline const vector<T>& GetCoefficient() const noexcept;
inline const uint& size() const noexcept;
void RemoveRedundantZero();
inline string Display() const noexcept;
static inline const Polynomial<T>& zero();
static inline const T& const_zero();
static inline const T& const_one();
};
template <typename T>
bool operator==( const Polynomial<T>& f0 , const T& t1 );
template <typename T>
bool operator==( const Polynomial<T>& f0 , const Polynomial<T>& f1 );
template <typename T , typename P> inline bool operator!=( const Polynomial<T>& f0 , const P& f1 );
template <typename T , typename P> inline Polynomial<T> operator+( const Polynomial<T>& f0 , const P& f1 );
template <typename T , typename P> inline Polynomial<T> operator-( const Polynomial<T>& f );
template <typename T , typename P> inline Polynomial<T> operator-( const Polynomial<T>& f0 , const P& f1 );
template <typename T , typename P> inline Polynomial<T> operator*( const Polynomial<T>& f0 , const P& f1 );
template <typename T> inline Polynomial<T> operator/( const Polynomial<T>& f0 , const T& t1 );
template <typename T> inline Polynomial<T> operator%( const Polynomial<T>& f0 , const T& t1 );
template <typename T> inline Polynomial<T>::Polynomial() : m_f() , m_size( 0 ) , m_no_redundant_zero( true ) {}
template <typename T> inline Polynomial<T>::Polynomial( const T& t ) : Polynomial() { if( t != const_zero() ){ operator[]( 0 ) = t; } }
template <typename T> inline Polynomial<T>::Polynomial( const Polynomial<T>& f ) : m_f( f.m_f ) , m_size( f.m_size ) , m_no_redundant_zero( f.m_no_redundant_zero ) {}
template <typename T> inline Polynomial<T>::Polynomial( const uint& i , const T& t ) : Polynomial() { if( t != const_zero() ){ operator[]( i ) = t; } }
template <typename T> inline Polynomial<T>& Polynomial<T>::operator=( const T& t ) { m_f.clear(); m_size = 0; operator[]( 0 ) = t; return *this; }
template <typename T> inline Polynomial<T>& Polynomial<T>::operator=( const Polynomial<T>& f ) { m_f = f.m_f; m_size = f.m_size; m_no_redundant_zero = f.m_no_redundant_zero; return *this; }
template <typename T>
const T& Polynomial<T>::operator[]( const uint& i ) const
{
if( m_size <= i ){
return const_zero();
}
return m_f[i];
}
template <typename T> inline T& Polynomial<T>::operator[]( const uint& i )
{
m_no_redundant_zero = false;
const T& z = const_zero();
while( m_size <= i ){
m_f.push_back( z );
m_size++;
}
return m_f[i];
}
template <typename T> inline Polynomial<T>& Polynomial<T>::operator+=( const T& t ) { operator[]( 0 ) += t; return *this; }
template <typename T>
Polynomial<T>& Polynomial<T>::operator+=( const Polynomial<T>& f )
{
for( uint i = 0 ; i < f.m_size ; i++ ){
operator[]( i ) += f.m_f[i];
}
return *this;
}
template <typename T> inline Polynomial<T>& Polynomial<T>::operator-=( const T& t ) { operator[]( 0 ) -= t; return *this; }
template <typename T>
Polynomial<T>& Polynomial<T>::operator-=( const Polynomial<T>& f )
{
for( uint i = 0 ; i < f.m_size ; i++ ){
operator[]( i ) -= f.m_f[i];
}
return *this;
}
template <typename T>
Polynomial<T>& Polynomial<T>::operator*=( const T& t )
{
if( ! m_no_redundant_zero ){
RemoveRedundantZero();
}
if( m_size == 0 || t == const_one() ){
return *this;
}
if( t == const_zero() ){
return operator=( zero() );
}
for( uint i = 0 ; i < m_size ; i++ ){
operator[]( i ) *= t;
}
// Tが体である場合は省略可能
RemoveRedundantZero();
return *this;
}
template <typename T>
Polynomial<T>& Polynomial<T>::operator*=( const Polynomial<T>& f )
{
if( ! m_no_redundant_zero ){
RemoveRedundantZero();
}
if( m_size == 0 ){
return *this;
}
if( f.m_size == 0 ){
return operator=( zero() );
}
const uint size = m_size + f.m_size - 1;
Polynomial<T> product{};
for( uint i = 0 ; i < size ; i++ ){
T& product_i = product[i];
const uint j_min = m_size <= i ? i - m_size + 1 : 0;
const uint j_lim = i < f.m_size ? i + 1 : f.m_size;
for( uint j = j_min ; j < j_lim ; j++ ){
product_i += m_f[i - j] * f.m_f[j];
}
}
product.RemoveRedundantZero();
return operator=( product );
}
template <typename T>
Polynomial<T>& Polynomial<T>::operator/=( const T& t )
{
if( ! m_no_redundant_zero ){
RemoveRedundantZero();
}
for( uint i = 0 ; i < m_size ; i++ ){
operator[]( i ) /= t;
}
// Tが体である場合は省略可能
RemoveRedundantZero();
return *this;
}
template <typename T>
Polynomial<T>& Polynomial<T>::operator%=( const T& t )
{
if( ! m_no_redundant_zero ){
RemoveRedundantZero();
}
for( uint i = 0 ; i < m_size ; i++ ){
operator[]( i ) %= t;
}
RemoveRedundantZero();
return *this;
}
template <typename T> inline Polynomial<T> Polynomial<T>::operator-() const { Polynomial<T>().operator-=( *this ); }
template <typename T> inline const vector<T>& Polynomial<T>::GetCoefficient() const noexcept { return m_f; }
template <typename T> inline const uint& Polynomial<T>::size() const noexcept { return m_size; }
template <typename T>
void Polynomial<T>::RemoveRedundantZero()
{
if( m_no_redundant_zero ){
return;
}
const T& z = const_zero();
while( m_size > 0 ? m_f[m_size - 1] == z : false ){
m_f.pop_back();
m_size--;
}
m_no_redundant_zero = true;
return;
}
template <typename T>
string Polynomial<T>::Display() const noexcept
{
string s = "(";
if( m_size > 0 ){
s += to_string( m_f[0] );
for( uint i = 1 ; i < m_size ; i++ ){
s += "," + to_string( m_f[i] );
}
}
s += ")";
return s;
}
template <typename T> inline const Polynomial<T>& Polynomial<T>::zero() { static const Polynomial<T> z{}; return z; }
template <typename T> inline const T& Polynomial<T>::const_zero() { static const T z{ 0 }; return z; }
template <typename T> inline const T& Polynomial<T>::const_one() { static const T o{ 1 }; return o; }
template <typename T>
bool operator==( const Polynomial<T>& f0 , const T& t1 )
{
const uint& size = f0.size();
const T& zero = Polynomial<T>::const_zero();
for( uint i = 1 ; i < size ; i++ ){
if( f0[i] != zero ){
return false;
}
}
return f0[0] == t1;
}
template <typename T>
bool operator==( const Polynomial<T>& f0 , const Polynomial<T>& f1 )
{
const uint& size0 = f0.size();
const uint& size1 = f1.size();
const uint& size = size0 < size1 ? size1 : size0;
for( uint i = 0 ; i < size ; i++ ){
if( f0[i] != f1[i] ){
return false;
}
}
return true;
}
template <typename T , typename P> inline bool operator!=( const Polynomial<T>& f0 , const P& f1 ) { return !( f0 == f1 ); }
template <typename T , typename P> inline Polynomial<T> operator+( const Polynomial<T>& f0 , const P& f1 ) { Polynomial<T> f = f0; f += f1; return f; }
template <typename T , typename P> inline Polynomial<T> operator-( const Polynomial<T>& f ) { return Polynomial<T>::zero() - f; }
template <typename T , typename P> inline Polynomial<T> operator-( const Polynomial<T>& f0 , const P& f1 ) { Polynomial<T> f = f0; return f.operator-=( f1 ); }
template <typename T , typename P> inline Polynomial<T> operator*( const Polynomial<T>& f0 , const P& f1 ) { Polynomial<T> f = f0; return f.operator*=( f1 ); }
template <typename T> inline Polynomial<T> operator/( const Polynomial<T>& f0 , const T& t1 ) { Polynomial<T> f = f0; return f.operator/=( t1 ); }
template <typename T> inline Polynomial<T> operator%( const Polynomial<T>& f0 , const T& t1 ) { Polynomial<T> f = f0; return f.operator%=( t1 ); }
#define DEFINITION_OF_PARTIAL_SPECIALISATION_OF_MULTIPLICATION_OF_TRUNCATED_POLYNOMIAL( TYPE ) \
template <> inline TruncatedPolynomial< TYPE >& TruncatedPolynomial< TYPE >::operator*=( const Polynomial< TYPE >& f ) { return TruncatedPolynomial< TYPE >::FFT_Multiplication( f ); } \
\
template <typename T>
class TruncatedPolynomial :
public Polynomial<T>
{
private:
// m_N == 0でも動くが、その場合はm_size == 1の時にm_size <= m_Nが成り立たなくなることに注意
uint m_N;
public:
inline TruncatedPolynomial( const uint& N = 0 );
inline TruncatedPolynomial( const TruncatedPolynomial<T>& f );
inline TruncatedPolynomial( const uint& N , const T& t );
TruncatedPolynomial( const uint& N , const Polynomial<T>& f );
inline TruncatedPolynomial( const uint& N , const uint& i , const T& t );
// m_Nも代入されることに注意
inline TruncatedPolynomial<T>& operator=( const TruncatedPolynomial<T>& f );
inline TruncatedPolynomial<T>& operator=( const T& t );
inline TruncatedPolynomial<T>& operator=( const Polynomial<T>& f );
// m_Nは変化しないことに注意
inline TruncatedPolynomial<T>& operator+=( const T& t );
TruncatedPolynomial<T>& operator+=( const Polynomial<T>& f );
inline TruncatedPolynomial<T>& operator-=( const T& t );
TruncatedPolynomial<T>& operator-=( const Polynomial<T>& f );
inline TruncatedPolynomial<T>& operator*=( const T& t );
TruncatedPolynomial<T>& operator*=( const Polynomial<T>& f );
inline TruncatedPolynomial<T>& operator/=( const T& t );
inline TruncatedPolynomial<T>& operator/=( const TruncatedPolynomial<T>& t );
inline TruncatedPolynomial<T>& operator%=( const T& t );
inline TruncatedPolynomial<T> operator-() const;
inline void SetTruncation( const uint& N ) noexcept;
inline const uint& GetTruncation() const noexcept;
private:
inline void Truncate();
// m_N == 0の場合はサポート外
TruncatedPolynomial<T>& FFT_Multiplication( const Polynomial<T>& f );
};
template <typename T , typename P> inline TruncatedPolynomial<T> operator+( const TruncatedPolynomial<T>& f0 , const P& f1 );
template <typename T , typename P> inline TruncatedPolynomial<T> operator-( const TruncatedPolynomial<T>& f );
template <typename T , typename P> inline TruncatedPolynomial<T> operator-( const TruncatedPolynomial<T>& f0 , const P& f1 );
template <typename T , typename P> inline TruncatedPolynomial<T> operator*( const TruncatedPolynomial<T>& f0 , const P& f1 );
template <typename T , typename P> inline TruncatedPolynomial<T> operator/( const TruncatedPolynomial<T>& f0 , const P& f1 );
template <typename T> inline TruncatedPolynomial<T> operator%( const TruncatedPolynomial<T>& f0 , const T& t1 );
// m_Nが1下がることに注意
template <typename T>
TruncatedPolynomial<T> Differential( const TruncatedPolynomial<T>& f );
// m_Nがi下がることに注意
template <typename T> inline TruncatedPolynomial<T> Differential( const uint& i , const TruncatedPolynomial<T>& f );
// m_Nが1上がることに注意
// Tが標数0またはf.m_N + 1以上の体の場合のみサポート
template <typename T>
TruncatedPolynomial<T> Integral( const TruncatedPolynomial<T>& f );
// f[0]が可逆な場合のみサポート
template <typename T>
TruncatedPolynomial<T> Inverse( const TruncatedPolynomial<T>& f );
// Tが標数0またはf.m_N以上の体でかつf[0] == 0の場合のみサポート
template <typename T>
TruncatedPolynomial<T> Exp( const TruncatedPolynomial<T>& f );
// Tが標数0またはf.m_N以上の体でかつf[0] == 1の場合のみサポート
template <typename T> inline TruncatedPolynomial<T> Log( const TruncatedPolynomial<T>& f );
// Tが標数0またはf.m_N以上の体でかつf[0] == 1の場合のみサポート
template <typename T>
TruncatedPolynomial<T> Power( const TruncatedPolynomial<T>& f , const T& t );
template <typename T> inline TruncatedPolynomial<T>::TruncatedPolynomial( const uint& N ) : Polynomial<T>() , m_N( N ) {}
template <typename T> inline TruncatedPolynomial<T>::TruncatedPolynomial( const TruncatedPolynomial<T>& f ) : Polynomial<T>( f ) , m_N( f.m_N ) {}
template <typename T> inline TruncatedPolynomial<T>::TruncatedPolynomial( const uint& N , const T& t ) : Polynomial<T>( t ) , m_N( N ) {}
template <typename T>
TruncatedPolynomial<T>::TruncatedPolynomial( const uint& N , const Polynomial<T>& f ) : Polynomial<T>() , m_N( N )
{
const uint& f_size = f.Polynomial<T>::size();
const uint& size = f_size < m_N ? f_size : m_N;
for( uint i = 0 ; i < size ; i++ ){
Polynomial<T>::m_f.push_back( f.Polynomial<T>::operator[]( i ) );
Polynomial<T>::m_size++;
}
}
template <typename T> inline TruncatedPolynomial<T>::TruncatedPolynomial( const uint& N , const uint& i , const T& t ) : Polynomial<T>() , m_N( N ) { if( i < m_N ? t != Polynomial<T>::const_zero() : false ){ Polynomial<T>::operator[]( i ) = t; } }
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator=( const TruncatedPolynomial<T>& f ) { Polynomial<T>::operator=( f ); m_N = f.m_N; return *this; }
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator=( const T& t ) { Polynomial<T>::operator=( t ); return *this; }
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator=( const Polynomial<T>& f ) { return operator=( TruncatedPolynomial<T>( m_N , f ) ); }
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator+=( const T& t ) { Polynomial<T>::operator+=( t ); return *this; }
template <typename T>
TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator+=( const Polynomial<T>& f )
{
const uint& f_size = f.Polynomial<T>::size();
const uint& size = f_size < m_N ? f_size : m_N;
for( uint i = 0 ; i < size ; i++ ){
Polynomial<T>::operator[]( i ) += f.Polynomial<T>::operator[]( i );
}
return *this;
}
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator-=( const T& t ) { Polynomial<T>::operator-=( t ); return *this; }
template <typename T>
TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator-=( const Polynomial<T>& f )
{
const uint& f_size = f.Polynomial<T>::size();
const uint& size = f_size < m_N ? f_size : m_N;
for( uint i = 0 ; i < size ; i++ ){
Polynomial<T>::operator[]( i ) -= f.Polynomial<T>::operator[]( i );
}
return *this;
}
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator*=( const T& t ) { Polynomial<T>::operator*=( t ); return *this; }
template <typename T>
TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator*=( const Polynomial<T>& f )
{
if( ! Polynomial<T>::m_no_redundant_zero ){
Polynomial<T>::RemoveRedundantZero();
}
if( Polynomial<T>::m_size == 0 ){
return *this;
}
const uint& f_size = f.Polynomial<T>::size();
if( f_size == 0 ){
return operator=( Polynomial<T>::zero() );
}
uint size = Polynomial<T>::m_size + f_size - 1;
if( size >= m_N ){
size = m_N;
}
TruncatedPolynomial<T> product{ m_N , 0 };
for( uint i = 0 ; i < size ; i++ ){
T& product_i = product[i];
const uint j_min = Polynomial<T>::m_size <= i ? i - Polynomial<T>::m_size + 1 : 0;
const uint j_lim = i < f_size ? i + 1 : f_size;
for( uint j = j_min ; j < j_lim ; j++ ){
product_i += Polynomial<T>::operator[]( i - j ) * f.Polynomial<T>::operator[]( j );
}
}
product.Polynomial<T>::RemoveRedundantZero();
return operator=( product );
}
DEFINITION_OF_PARTIAL_SPECIALISATION_OF_MULTIPLICATION_OF_TRUNCATED_POLYNOMIAL( Mod<998244353> );
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator/=( const T& t ) { Polynomial<T>::operator/=( t ); return *this; }
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator/=( const TruncatedPolynomial<T>& f ) { return operator*=( Inverse( m_N == f.m_N ? f : TruncatedPolynomial<T>( m_N , f ) ) ); }
template <typename T> inline TruncatedPolynomial<T>& TruncatedPolynomial<T>::operator%=( const T& t ) { Polynomial<T>::operator%=( t ); return *this; }
template <typename T> inline TruncatedPolynomial<T> TruncatedPolynomial<T>::operator-() const { return TruncatedPolynomial<T>( m_N ).operator-=( *this ); }
template <typename T> inline void TruncatedPolynomial<T>::SetTruncation( const uint& N ) noexcept { m_N = N; Truncate(); }
template <typename T> inline const uint& TruncatedPolynomial<T>::GetTruncation() const noexcept { return m_N; }
template <typename T> inline void TruncatedPolynomial<T>::Truncate(){ while( Polynomial<T>::m_size > m_N ){ Polynomial<T>::m_f.pop_back(); Polynomial<T>::m_size--; } }
template <typename T>
TruncatedPolynomial<T>& TruncatedPolynomial<T>::FFT_Multiplication( const Polynomial<T>& f )
{
const uint N = m_N * 2 - 1;
uint two_power = 1;
T two_power_inv{ 1 };
uint exponent = 0;
while( N > two_power ){
two_power *= 2;
two_power_inv /= 2;
exponent++;
}
vector<T> f0{ move( FFT<T>( Polynomial<T>::m_f , two_power , exponent ) ) };
const uint& size = f.Polynomial<T>::size();
const vector<T>& f_m_f = f.Polynomial<T>::GetCoefficient();
vector<T> f1;
if( size <= m_N ){
f1 = move( FFT<T>( f_m_f , two_power , exponent ) );
} else {
for( uint i = 0 ; i < m_N ; i++ ){
f1.push_back( f_m_f[i] );
}
f1 = move( FFT<T>( f1 , two_power , exponent ) );
}
for( uint i = 0 ; i < two_power ; i++ ){
f0[i] *= f1[i];
}
Polynomial<T>::m_f = move( IFFT<T>( f0 , two_power , two_power_inv , exponent ) );
for( uint i = m_N ; i < two_power ; i++ ){
Polynomial<T>::m_f.pop_back();
}
Polynomial<T>::m_size = m_N;
return *this;
}
template <typename T , typename P> inline TruncatedPolynomial<T> operator+( const TruncatedPolynomial<T>& f0 , const P& f1 ) { TruncatedPolynomial<T> f = f0; f += f1; return f; }
template <typename T , typename P> inline TruncatedPolynomial<T> operator-( const TruncatedPolynomial<T>& f ) { return TruncatedPolynomial<T>::zero() - f; }
template <typename T , typename P> inline TruncatedPolynomial<T> operator-( const TruncatedPolynomial<T>& f0 , const P& f1 ) { TruncatedPolynomial<T> f = f0; return f.operator-=( f1 ); }
template <typename T , typename P> inline TruncatedPolynomial<T> operator*( const TruncatedPolynomial<T>& f0 , const P& f1 ) { TruncatedPolynomial<T> f = f0; return f.operator*=( f1 ); }
template <typename T , typename P> inline TruncatedPolynomial<T> operator/( const TruncatedPolynomial<T>& f0 , const P& f1 ) { TruncatedPolynomial<T> f = f0; return f.operator/=( f1 ); }
template <typename T> inline TruncatedPolynomial<T> operator%( const TruncatedPolynomial<T>& f0 , const T& t1 ) { TruncatedPolynomial<T> f = f0; return f.operator%=( t1 ); }
template <typename T>
TruncatedPolynomial<T> Differential( const TruncatedPolynomial<T>& f )
{
const uint& N = f.GetTruncation();
if( N == 0 ){
return TruncatedPolynomial<T>();
}
TruncatedPolynomial<T> f_dif{ N - 1 };
const uint& size = f.size();
for( uint i = 1 ; i < size ; i++ ){
f_dif[i - 1] = i * f[i];
}
return f_dif;
}
template <typename T> inline TruncatedPolynomial<T> Differential( const uint& i , const TruncatedPolynomial<T>& f ) { return i == 0 ? f : Differential<T>( i - 1 , Differential<T>( f ) ); }
template <typename T>
TruncatedPolynomial<T> Integral( const TruncatedPolynomial<T>& f )
{
const uint& N = f.GetTruncation();
TruncatedPolynomial<T> f_int{ N + 1 };
const uint& size = f.size();
for( uint i = 1 ; i <= size ; i++ ){
f_int[i] = f[i - 1] / T( i );
}
return f_int;
}
template <typename T>
TruncatedPolynomial<T> Inverse( const TruncatedPolynomial<T>& f )
{
const uint& N = f.GetTruncation();
const T& one = Polynomial<T>::const_one();
const T two = one + one;
uint power = 1;
TruncatedPolynomial<T> f_inv{ power , one / f[0] };
while( power < N ){
power *= 2;
f_inv.SetTruncation( power );
f_inv *= - f_inv * f + two;
}
f_inv.SetTruncation( N );
return f_inv;
}
template <typename T>
TruncatedPolynomial<T> Exp( const TruncatedPolynomial<T>& f )
{
const uint& N = f.GetTruncation();
const T& one = Polynomial<T>::const_one();
uint power = 1;
TruncatedPolynomial<T> f_exp{ power , one };
while( power < N ){
power *= 2;
f_exp.SetTruncation( power );
f_exp *= - Log( f_exp ) + f + one;
}
f_exp.SetTruncation( N );
return f_exp;
}
template <typename T> inline TruncatedPolynomial<T> Log( const TruncatedPolynomial<T>& f ) { return Integral<T>( Differential<T>( f ) / f ); }
template <typename T> inline TruncatedPolynomial<T> Power( const TruncatedPolynomial<T>& f , const T& t ) { return Exp( Log( f ) * t ); }
constexpr const ll P = 998244353;
constexpr const ll Q = 999630629;
using MOD = Mod<P>;
int main(){
UNTIE;
CIN( ll , N );
ll A[100000];
ll sum = 0;
FOR( i , 0 , N ){
ll& Ai = A[i];
cin >> Ai;
sum += Ai;
}
MOD coef{};
MOD one = MOD( 1 );
ll D_signed = sum - Q + 1;
if( D_signed > 0 ){
sort( A , A + N );
uint B[100000];
ll count[100000];
ll Ai_prev = 0;
ll num = -1;
FOR( i , 0 , N ){
ll& Ai = A[i];
if( Ai_prev == Ai ){
count[num]++;
} else if( Ai < D_signed ){
num++;
B[num] = uint( Ai );
count[num] = 1;
Ai_prev = Ai;
} else {
i = N;
}
}
uint D = uint( D_signed );
TruncatedPolynomial<MOD> f{ D };
num++;
FOR( i , 0 , num ){
uint& Bi = B[i];
MOD count_i{ count[i] };
uint j_lim = ( D - 1 ) / Bi + 1;
uint d = 0;
FOR( j , 1 , j_lim ){
d += Bi;
if( j % 2 == 0 ){
f[d] -= count_i / j;
} else {
f[d] += count_i / j;
}
}
}
f = Exp<MOD>( f );
FOR( i , 0 , D ){
coef += f[i];
}
}
MOD m{ one };
MOD power{ 2 };
N--;
while( N != 0 ){
if( N % 2 == 1 ){
m *= power;
}
power = power * power;
N /= 2;
}
RETURN( ( m * sum - coef * Q ).Represent() );
}