結果

問題 No.2074 Product is Square ?
ユーザー chineristACchineristAC
提出日時 2022-09-14 12:44:46
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,934 bytes
コンパイル時間 175 ms
コンパイル使用メモリ 82,976 KB
実行使用メモリ 90,184 KB
最終ジャッジ日時 2024-05-08 17:57:28
合計ジャッジ時間 5,512 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 53 ms
56,448 KB
testcase_01 AC 106 ms
77,068 KB
testcase_02 AC 99 ms
76,764 KB
testcase_03 AC 101 ms
77,056 KB
testcase_04 AC 99 ms
77,184 KB
testcase_05 AC 103 ms
76,972 KB
testcase_06 AC 101 ms
76,772 KB
testcase_07 AC 98 ms
77,056 KB
testcase_08 AC 98 ms
76,760 KB
testcase_09 AC 97 ms
76,808 KB
testcase_10 AC 101 ms
76,800 KB
testcase_11 TLE -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import log,gcd

input = lambda :sys.stdin.readline()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

def isPrimeMR(n):
    if n==1:
        return 0
    d = n - 1
    d = d // (d & -d)
    L = [2, 3, 5, 7, 11, 13, 17]
    if n in L:
        return 1
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = (y * y) % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    from math import gcd
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i*i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += 1 + i % 2
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret

def isqrt(a):
    ok = 0
    ng = 10**9+1
    while ng-ok>1:
        mid = (ok+ng)//2
        if mid*mid <= a:
            ok = mid
        else:
            ng = mid
    return ok

def solve(N,_A):
    A = _A.copy()
    for i in range(N):
        for j in range(i+1,N):
            g = gcd(A[i],A[j])
            A[i] //= g
            A[j] //= g
    
    for a in A:
        if isqrt(a)**2 !=a:
            return False
    return True

def big_int(N,A):
    p = 1
    for a in A:
        p *= a
    
    ok = 0
    ng = 10**(18*N) + 1
    while ng-ok>1:
        mid = (ok+ng)//2
        if mid*mid <= p:
            ok = mid
        else:
            ng = mid
    
    return ok*ok == p


for _ in range(int(input())):
    N = int(input())
    A = li()
    print("Yes" if big_int(N,A) else "No")
0