結果
問題 | No.5009 Draw A Convex Polygon |
ユーザー | Lanatus |
提出日時 | 2022-12-02 17:41:20 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 154 ms / 2,600 ms |
コード長 | 7,511 bytes |
コンパイル時間 | 2,045 ms |
実行使用メモリ | 22,320 KB |
スコア | 159,996 |
平均クエリ数 | 159997.00 |
最終ジャッジ日時 | 2022-12-02 17:41:24 |
合計ジャッジ時間 | 3,230 ms |
ジャッジサーバーID (参考情報) |
judge11 / judge12 |
純コード判定しない問題か言語 |
(要ログイン)
ソースコード
#include <bits/stdc++.h> #define all(v) begin(v), end(v) #define endl '\n' using namespace std; #define int long long using ull = unsigned long long; using ll = long long; using ld = long double; const int MOD = 1e9 + 7; const int MAX = 2000005; #pragma region Macros template <class S, class T> inline bool chmax(S &a, const T &b) { if (a < b) { a = b; return true; } return false; } template <class S, class T> inline bool chmin(S &a, const T &b) { if (a > b) { a = b; return true; } return false; } template <class S> using pq = priority_queue<S>; template <class S> using pqg = priority_queue<S, vector<S>, greater<S>>; struct mint { ull a; constexpr mint(const ull x = 0) noexcept : a(x % MOD) {} constexpr mint operator + (const mint rhs) const noexcept { return mint(*this) += rhs; } constexpr mint operator - (const mint rhs) const noexcept { return mint(*this) -= rhs; } constexpr mint operator * (const mint rhs) const noexcept { return mint(*this) *= rhs; } constexpr mint operator / (const mint rhs) const noexcept { return mint(*this) /= rhs; } constexpr mint &operator += (const mint rhs) noexcept { a += rhs.a; if (a >= MOD) a -= MOD; return *this; } constexpr mint &operator -= (const mint rhs) noexcept { if (a < rhs.a) a += MOD; a -= rhs.a; return *this; } constexpr mint &operator *= (const mint rhs) noexcept { a = a * rhs.a % MOD; return *this; } constexpr mint &operator /= (mint rhs) noexcept { ull exp = MOD - 2; while (exp) { if (exp % 2) *this *= rhs; rhs *= rhs; exp /= 2; } return *this; } constexpr mint pow(const mint &a, ull n) noexcept { if (n <= 0) return 1; auto t = pow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } }; long long modpow(long long a, long long n, long long m = MOD) { if (n <= 0) return 1LL; if (n % 2LL) return a * modpow(a, n-1) % MOD; long long t = modpow(a, n/2); return t % MOD * t % MOD; } struct Combination { const int MAX = 2e5 + 5; vector<long long> fact, invfact; Combination() { fact.resize(MAX); invfact.resize(MAX); fact[0] = 1; for (int i = 1; i < MAX; ++i) { fact[i] = fact[i-1] * i % MOD; } invfact[MAX-1] = modpow(fact[MAX-1], MOD-2); for (int i = MAX-1; i > 0; --i) { invfact[i-1] = invfact[i] * i % MOD; } } long long nCr(int n, int r) { long long a = fact[n]; long long b = invfact[r] * invfact[n-r] % MOD; return a * b % MOD; } }; struct Node { int from, to; ll d; Node(int from, int to, ll d): from(from), to(to), d(d) {} Node(int to, ll d): from(-1), to(to), d(d) {} Node() {} }; using Graph = vector<vector<Node>>; struct LCA { int n, k; vector<vector<int>> parent; vector<int> depth; vector<ll> dis; LCA(const Graph& G, int root = 0) : n(G.size()) { k = 1; while ((1LL << k) < n) ++k; parent.assign(k, vector<int>(n, -1)); depth.assign(n, -1); dis.assign(n, 0); dfs(G, root, -1, 0); for (int i = 0; i < k-1; ++i) { for (int j = 0; j < n; ++j) { if (parent[i][j] == -1) parent[i+1][j] = -1; else parent[i+1][j] = parent[i][parent[i][j]]; } } } void dfs(const Graph& G, int v, int p, int d) { depth[v] = d; parent[0][v] = p; for (auto e : G[v]) { if (e.to == p) continue; dis[e.to] = dis[v] + e.d; dfs(G, e.to, v, d + 1); } } int query(int x, int y) { if (depth[x] < depth[y]) swap(x, y); int diff = depth[x] - depth[y]; for (int i = 0; diff > 0; diff /= 2, ++i) { if (diff & 1) { x = parent[i][x]; } } if (x == y) return x; for (int i = k-1; i >= 0; --i) { if (parent[i][x] != parent[i][y]) { x = parent[i][x]; y = parent[i][y]; } } return parent[0][x]; } ll get_dis(int x, int y) { return dis[x] + dis[y] - 2 * dis[query(x, y)]; } bool is_on_path(int x, int y, int a) { return get_dis(x, a) + get_dis(a, y) == get_dis(x, y); } }; // 0-idx struct RmaxQ { const ll INFLL = 1e18; int m; vector<long long> dat; RmaxQ(int n) { m = 1; while (m < n) m *= 2; dat.assign(2 * m - 1, -INFLL); } void update(int i, long long x) { i += m - 1; dat[i] = x; while (i) { i = (i - 1) / 2; dat[i] = max(dat[i * 2 + 1], dat[i * 2 + 2]); } } // [a, b) long long query(int a, int b, int k, int l, int r) { if (l >= b || r <= a) return -INFLL; if (a <= l && r <= b) return dat[k]; long long vl = query(a, b, k * 2 + 1, l, (l + r) / 2); long long vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return max(vl, vr); } long long query_sub(int a, int b) { return query(a, b, 0, 0, m); } }; struct RsumQ { const ll NIL = 0; int m; vector<long long> dat; RsumQ(int n) { m = 1; while (m < n) m *= 2; dat.assign(2 * m - 1, NIL); } void update(int i, long long x) { i += m - 1; dat[i] += x; while (i) { i = (i - 1) / 2; dat[i] = dat[i * 2 + 1] + dat[i * 2 + 2]; } } // [a, b) long long query(int a, int b, int k, int l, int r) { if (l >= b || r <= a) return NIL; if (a <= l && r <= b) return dat[k]; long long vl = query(a, b, k * 2 + 1, l, (l + r) / 2); long long vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return vl + vr; } long long query_sub(int a, int b) { return query(a, b, 0, 0, m); } }; struct RminQ { const ll INFLL = 1e18; int m; vector<long long> dat; RminQ(int n) { m = 1; while (m < n) m *= 2; dat.assign(2 * m - 1, INFLL); } void update(int i, long long x) { i += m - 1; dat[i] = x; while (i) { i = (i - 1) / 2; dat[i] = min(dat[i * 2 + 1], dat[i * 2 + 2]); } } // [a, b) long long query(int a, int b, int k, int l, int r) { if (l >= b || r <= a) return INFLL; if (a <= l && r <= b) return dat[k]; long long vl = query(a, b, k * 2 + 1, l, (l + r) / 2); long long vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return min(vl, vr); } long long query_sub(int a, int b) { return query(a, b, 0, 0, m); } }; struct UnionFind { int n; vector<int> parent, siz; UnionFind(int n) : n(n) { parent.resize(n); siz.resize(n); for (int i = 0; i < n; ++i) { parent[i] = i; siz[i] = 1; } } int root(int x) { if (parent[x] == x) return x; return parent[x] = root(parent[x]); } bool unite(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (siz[x] < siz[y]) swap(x, y); parent[y] = x; siz[x] += siz[y]; return true; } int same(int x, int y) { return root(x) == root(y); } int size(int x) { return siz[root(x)]; } }; #pragma endregion signed main(void) { int N = 40000; int x = 0, y = N * (N - 1) / 2; vector<pair<int,int>> p; p.push_back({x, y}); for (int i = 1; i < N; ++i) { x -= (N - i); y -= i; p.push_back({x, y}); } for (int i = 1; i < N; ++i) { x += i; y -= (N - i); p.push_back({x, y}); } for (int i = 1; i < N; ++i) { x += (N - i); y += i; p.push_back({x, y}); } for (int i = 1; i < N - 1; ++i) { x -= i; y += (N - i); p.push_back({x, y}); } cout << p.size() << endl; for (auto [x, y] : p) cout << x << " " << y << endl; return 0; }