結果
問題 | No.2578 Jewelry Store |
ユーザー | suisen |
提出日時 | 2023-01-11 19:54:42 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,435 bytes |
コンパイル時間 | 504 ms |
コンパイル使用メモリ | 82,044 KB |
実行使用メモリ | 136,832 KB |
最終ジャッジ日時 | 2024-09-27 00:33:24 |
合計ジャッジ時間 | 17,992 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 61 ms
67,328 KB |
testcase_01 | AC | 62 ms
67,584 KB |
testcase_02 | AC | 118 ms
78,464 KB |
testcase_03 | AC | 107 ms
78,208 KB |
testcase_04 | AC | 164 ms
78,848 KB |
testcase_05 | WA | - |
testcase_06 | AC | 118 ms
78,660 KB |
testcase_07 | AC | 154 ms
78,464 KB |
testcase_08 | AC | 106 ms
78,592 KB |
testcase_09 | AC | 158 ms
78,716 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 107 ms
78,848 KB |
testcase_13 | AC | 110 ms
78,836 KB |
testcase_14 | AC | 102 ms
78,464 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 158 ms
78,592 KB |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | AC | 155 ms
78,848 KB |
testcase_21 | AC | 156 ms
78,720 KB |
testcase_22 | AC | 112 ms
79,216 KB |
testcase_23 | WA | - |
testcase_24 | AC | 102 ms
78,336 KB |
testcase_25 | AC | 113 ms
78,464 KB |
testcase_26 | AC | 112 ms
78,464 KB |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 557 ms
79,772 KB |
testcase_31 | WA | - |
testcase_32 | AC | 250 ms
115,328 KB |
testcase_33 | WA | - |
testcase_34 | AC | 332 ms
118,760 KB |
testcase_35 | AC | 160 ms
92,540 KB |
testcase_36 | AC | 275 ms
119,864 KB |
testcase_37 | AC | 199 ms
79,548 KB |
testcase_38 | AC | 220 ms
79,232 KB |
testcase_39 | WA | - |
testcase_40 | AC | 213 ms
79,520 KB |
testcase_41 | WA | - |
testcase_42 | AC | 202 ms
79,276 KB |
testcase_43 | AC | 245 ms
78,976 KB |
testcase_44 | WA | - |
testcase_45 | AC | 217 ms
79,232 KB |
testcase_46 | WA | - |
testcase_47 | AC | 1,000 ms
83,396 KB |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | AC | 210 ms
79,232 KB |
testcase_52 | AC | 473 ms
79,728 KB |
testcase_53 | AC | 117 ms
78,324 KB |
ソースコード
import sys from typing import List from math import gcd input = sys.stdin.readline # https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 class PrimeFactorize: @staticmethod def __isPrimeMR(n: int): d = n - 1 d = d // (d & -d) L = [2] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 @staticmethod def __findFactorRho(n: int): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 x = ys = y while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if PrimeFactorize.__isPrimeMR(g): return g elif PrimeFactorize.__isPrimeMR(n // g): return n // g return PrimeFactorize.__findFactorRho(g) @staticmethod def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if PrimeFactorize.__isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = PrimeFactorize.__findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret P = 998244353 t, m = map(int, input().split()) pf = PrimeFactorize.primeFactor(m).keys() k = len(pf) m_div_p = [m // p for p in pf] parity = [bin(s).count('1') & 1 for s in range(1 << k)] def subset_zeta_product(f: List[int]): block = 1 while block < 1 << k: offset = 0 while offset < 1 << k: for i in range(offset, offset + block): f[i + block] = f[i + block] * f[i] % P offset += 2 * block block <<= 1 def solve(): _, x0, c, d = map(int, input().split()) prod = [1] * (1 << k) wi = x0 for ai in map(int, input().split()): if m % ai == 0: t = 0 for j, mp in enumerate(m_div_p): t |= (mp % ai != 0) << j prod[t] = prod[t] * (1 + wi) % P wi = (c * wi + d) % P subset_zeta_product(prod) ans = 0 for s in range(1 << k): if parity[s]: ans -= prod[s] else: ans += prod[s] if m == 1: ans -= 1 print(ans % P) for _ in range(t): solve()