結果
| 問題 |
No.2578 Jewelry Store
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-01-11 19:54:42 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,435 bytes |
| コンパイル時間 | 504 ms |
| コンパイル使用メモリ | 82,044 KB |
| 実行使用メモリ | 136,832 KB |
| 最終ジャッジ日時 | 2024-09-27 00:33:24 |
| 合計ジャッジ時間 | 17,992 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 34 WA * 20 |
ソースコード
import sys
from typing import List
from math import gcd
input = sys.stdin.readline
# https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98
class PrimeFactorize:
@staticmethod
def __isPrimeMR(n: int):
d = n - 1
d = d // (d & -d)
L = [2]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = (y * y) % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
@staticmethod
def __findFactorRho(n: int):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
x = ys = y
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if PrimeFactorize.__isPrimeMR(g): return g
elif PrimeFactorize.__isPrimeMR(n // g): return n // g
return PrimeFactorize.__findFactorRho(g)
@staticmethod
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i*i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += 1 + i % 2
if i == 101 and n >= 2 ** 20:
while n > 1:
if PrimeFactorize.__isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = PrimeFactorize.__findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
P = 998244353
t, m = map(int, input().split())
pf = PrimeFactorize.primeFactor(m).keys()
k = len(pf)
m_div_p = [m // p for p in pf]
parity = [bin(s).count('1') & 1 for s in range(1 << k)]
def subset_zeta_product(f: List[int]):
block = 1
while block < 1 << k:
offset = 0
while offset < 1 << k:
for i in range(offset, offset + block):
f[i + block] = f[i + block] * f[i] % P
offset += 2 * block
block <<= 1
def solve():
_, x0, c, d = map(int, input().split())
prod = [1] * (1 << k)
wi = x0
for ai in map(int, input().split()):
if m % ai == 0:
t = 0
for j, mp in enumerate(m_div_p):
t |= (mp % ai != 0) << j
prod[t] = prod[t] * (1 + wi) % P
wi = (c * wi + d) % P
subset_zeta_product(prod)
ans = 0
for s in range(1 << k):
if parity[s]:
ans -= prod[s]
else:
ans += prod[s]
if m == 1:
ans -= 1
print(ans % P)
for _ in range(t):
solve()