結果
| 問題 |
No.1999 Lattice Teleportation
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2023-03-10 01:54:08 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,035 bytes |
| コンパイル時間 | 3,000 ms |
| コンパイル使用メモリ | 263,912 KB |
| 実行使用メモリ | 7,380 KB |
| 最終ジャッジ日時 | 2024-09-18 03:10:14 |
| 合計ジャッジ時間 | 5,279 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 27 WA * 2 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
// constexpr int MOD = 998244353;
constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if (std::cmp_greater_equal(v += x.v, M)) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if (std::cmp_greater_equal(v += M - x.v, M)) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
auto operator<=>(const MInt& x) const = default;
MInt& operator++() {
if (std::cmp_equal(++v, M)) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
void argument_sort(std::vector<std::pair<int, int>>* ps) {
using Point = std::pair<int, int>;
std::vector<Point> orthant[4]{};
for (const Point& p : *ps) {
if (p.second >= 0) {
orthant[p.first >= 0 ? 2 : 3].emplace_back(p);
} else {
orthant[p.first >= 0].emplace_back(p);
}
}
ps->clear();
for (int i = 0; i < 4; ++i) {
if (i == 2) {
std::sort(orthant[i].begin(), orthant[i].end(),
[](const Point& a, const Point& b) -> bool {
if (a.first == 0 && a.second == 0) {
return !(b.first == 0 && b.second == 0);
}
if (b.first == 0 && b.second == 0) return false;
return static_cast<long long>(a.first) * b.second -
static_cast<long long>(a.second) * b.first > 0;
});
} else {
std::sort(orthant[i].begin(), orthant[i].end(),
[](const Point& a, const Point& b) -> bool {
return static_cast<long long>(a.first) * b.second -
static_cast<long long>(a.second) * b.first > 0;
});
}
std::copy(orthant[i].begin(), orthant[i].end(), std::back_inserter(*ps));
}
}
__int128 abs(const __int128 x) {
return x < 0 ? -x : x;
}
int main() {
int n; cin >> n;
vector<pair<int, int>> a;
a.reserve(n);
REP(_, n) {
int a_i, b_i; cin >> a_i >> b_i;
if (a_i == 0 && b_i == 0) continue;
if (b_i < 0) a_i = -a_i, b_i = -b_i;
a.emplace_back(a_i, b_i);
}
n = a.size();
if (n == 0) {
cout << 1 << '\n';
return 0;
}
argument_sort(&a);
vector<ll> p(n * 2, 0), q(n * 2, 0);
REP(i, n) {
p[i + 1] = p[i] + a[i].first;
q[i + 1] = q[i] + a[i].second;
}
REP(i, n - 1) {
p[n * 2 - 1 - i] = p[n * 2 - i] + a[n - 1 - i].first;
q[n * 2 - 1 - i] = q[n * 2 - i] + a[n - 1 - i].second;
}
// REP(i, n * 2) cout << p[i] << ' ' << q[i] << '\n';
ModInt ans = gcd(p.back(), q.back());
FOR(i, 1, n * 2) ans += gcd(p[i] - p[i - 1], q[i] - q[i - 1]);
ans = ans / 2 + 1;
FOR(i, 2, n * 2) {
const ll s = abs(static_cast<__int128>(p[i]) * q[i - 1] - static_cast<__int128>(p[i - 1]) * q[i]) % MOD;
ans += ModInt(s) / 2;
}
cout << ans << '\n';
return 0;
}
emthrm