結果

問題 No.1641 Tree Xor Query
ユーザー 草苺奶昔草苺奶昔
提出日時 2023-03-25 11:51:04
言語 Go
(1.22.1)
結果
WA  
実行時間 -
コード長 11,158 bytes
コンパイル時間 14,681 ms
コンパイル使用メモリ 232,472 KB
実行使用メモリ 11,912 KB
最終ジャッジ日時 2024-09-18 19:08:20
合計ジャッジ時間 16,198 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 WA -
testcase_02 AC 1 ms
6,940 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

// Add
// QueryPath
// QuerySubtree

package main

import (
	"bufio"
	"fmt"
	"os"
)

func main2() {
	tree := NewTree(5)
	tree.AddEdge(0, 1, 1)
	tree.AddEdge(0, 2, 1)
	tree.AddEdge(1, 3, 1)
	tree.AddEdge(1, 4, 1)
	tree.Build(0)

	A := NewTreeAbelGroup(tree, []Abel{1, 2, 3, 4, 5}, true, true, true)
	fmt.Println(A.QueryPath(0, 4))
}

func main() {
	// https://yukicoder.me/problems/no/1641
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n, q int
	fmt.Fscan(in, &n, &q)
	tree := NewTree(n)
	for i := 0; i < n-1; i++ {
		var a, b int
		fmt.Fscan(in, &a, &b)
		tree.AddEdge(a-1, b-1, 1)
	}
	tree.Build(0)

	A := make([]Abel, n)
	for i := 0; i < n; i++ {
		fmt.Fscan(in, &A[i])
	}
	TA := NewTreeAbelGroup(tree, A, true, false, true)
	for i := 0; i < q; i++ {
		var t, x, y int
		fmt.Fscan(in, &t, &x, &y)
		x--
		if t == 1 {
			TA.Add(x, Abel(y))
		}
		if t == 2 {
			fmt.Fprintln(out, TA.QuerySubtree(x))
		}
	}
}

type Abel = int

func e() Abel             { return 0 }
func op(e1, e2 Abel) Abel { return e1 ^ e2 }
func inv(e Abel) Abel     { return e } // 如果只查询前缀, 可以不需要是群

type TreeAbelGroup struct {
	tree         *Tree
	n            int
	isVertex     bool
	pathQuery    bool
	subtreeQuery bool
	bit          *_FTree
	bitSubtree   *_FTree
	unit         Abel
}

// 静态树的路径查询,维护的量需要满足阿贝尔群的性质.
//  data: 顶点的值, 或者边的值.(边的编号为两个定点中较深的那个点的编号)
//  isVertex: data是否为顶点的值以及查询的时候是否是顶点权值.
func NewTreeAbelGroup(tree *Tree, data []Abel, isVertex, pathQuery, subtreeQuery bool) *TreeAbelGroup {
	res := &TreeAbelGroup{
		tree: tree, n: len(tree.Tree),
		isVertex:  isVertex,
		pathQuery: pathQuery, subtreeQuery: subtreeQuery,
		unit: e(),
	}

	if pathQuery {
		bitRaw := make([]Abel, 2*res.n)
		if isVertex {
			for v := 0; v < res.n; v++ {
				bitRaw[tree.ELID(v)] = data[v]
				bitRaw[tree.ERID(v)] = inv(data[v])
			}
		} else {
			for i := range bitRaw {
				bitRaw[i] = res.unit
			}
			for e := 0; e < res.n-1; e++ {
				v := tree.EidtoV(e)
				bitRaw[tree.ELID(v)] = data[e]
				bitRaw[tree.ERID(v)] = inv(data[e])
			}
		}
		res.bit = _NewFTree(len(bitRaw), bitRaw...)
	}

	if subtreeQuery {
		bitRaw := make([]Abel, res.n)
		if isVertex {
			for v := 0; v < res.n; v++ {
				bitRaw[tree.LID[v]] = data[v]
			}
		} else {
			for i := range bitRaw {
				bitRaw[i] = res.unit
			}
			for e := 0; e < res.n-1; e++ {
				v := tree.EidtoV(e)
				bitRaw[tree.LID[v]] = data[e]
			}
		}
		res.bitSubtree = _NewFTree(len(bitRaw), bitRaw...)
	}

	return res
}

func (ta *TreeAbelGroup) Add(i int, x Abel) {
	v := i
	if !ta.isVertex {
		v = ta.tree.EidtoV(i)
	}
	if ta.pathQuery {
		inv_x := inv(x)
		ta.bit.Update(ta.tree.ELID(v), x)
		ta.bit.Update(ta.tree.ERID(v), inv_x)
	}
	if ta.subtreeQuery {
		ta.bitSubtree.Update(ta.tree.LID[v], x)
	}
}

func (ta *TreeAbelGroup) QueryPath(from, to int) Abel {
	lca := ta.tree.LCA(from, to)
	x1 := ta.bit.QueryRange(ta.tree.ELID(lca)+1, ta.tree.ELID(from)+1)
	offset := 1
	if ta.isVertex {
		offset = 0
	}
	x2 := ta.bit.QueryRange(ta.tree.ELID(lca)+offset, ta.tree.ELID(to)+1)
	return op(x1, x2)
}

func (ta *TreeAbelGroup) QuerySubtree(root int) Abel {
	l, r := ta.tree.LID[root], ta.tree.RID[root]
	offset := 1
	if ta.isVertex {
		offset = 0
	}
	return ta.bitSubtree.QueryRange(l+offset, r)
}

type Tree struct {
	Tree                 [][][2]int // (next, weight)
	Edges                [][3]int   // (u, v, w)
	Depth, DepthWeighted []int
	Parent               []int
	LID, RID             []int // 欧拉序[in,out)
	idToNode             []int
	top, heavySon        []int
	timer                int
}

func NewTree(n int) *Tree {
	tree := make([][][2]int, n)
	lid := make([]int, n)
	rid := make([]int, n)
	idToNode := make([]int, n)
	top := make([]int, n)   // 所处轻/重链的顶点(深度最小),轻链的顶点为自身
	depth := make([]int, n) // 深度
	depthWeighted := make([]int, n)
	parent := make([]int, n)   // 父结点
	heavySon := make([]int, n) // 重儿子
	edges := make([][3]int, 0, n-1)
	for i := range parent {
		parent[i] = -1
	}

	return &Tree{
		Tree:          tree,
		Depth:         depth,
		DepthWeighted: depthWeighted,
		Parent:        parent,
		LID:           lid,
		RID:           rid,
		idToNode:      idToNode,
		top:           top,
		heavySon:      heavySon,
		Edges:         edges,
	}
}

// 添加无向边 u-v, 边权为w.
func (tree *Tree) AddEdge(u, v, w int) {
	tree.Tree[u] = append(tree.Tree[u], [2]int{v, w})
	tree.Tree[v] = append(tree.Tree[v], [2]int{u, w})
	tree.Edges = append(tree.Edges, [3]int{u, v, w})
}

// 添加有向边 u->v, 边权为w.
func (tree *Tree) AddDirectedEdge(u, v, w int) {
	tree.Tree[u] = append(tree.Tree[u], [2]int{v, w})
	tree.Edges = append(tree.Edges, [3]int{u, v, w})
}

// root:0-based
//  当root设为-1时,会从0开始遍历未访问过的连通分量
func (tree *Tree) Build(root int) {
	if root != -1 {
		tree.build(root, -1, 0, 0)
		tree.markTop(root, root)
	} else {
		for i := 0; i < len(tree.Tree); i++ {
			if tree.Parent[i] == -1 {
				tree.build(i, -1, 0, 0)
				tree.markTop(i, i)
			}
		}
	}
}

// 返回 root 的欧拉序区间, 左闭右开, 0-indexed.
func (tree *Tree) Id(root int) (int, int) {
	return tree.LID[root], tree.RID[root]
}

// 返回边 u-v 对应的 欧拉序起点编号, 0-indexed.
func (tree *Tree) Eid(u, v int) int {
	if tree.LID[u] > tree.LID[v] {
		return tree.LID[u]
	}
	return tree.LID[v]
}

// 较深的那个点作为边的编号.
func (tree *Tree) EidtoV(eid int) int {
	e := tree.Edges[eid]
	u, v := e[0], e[1]
	if tree.Parent[u] == v {
		return u
	}
	return v
}

func (tree *Tree) LCA(u, v int) int {
	for {
		if tree.LID[u] > tree.LID[v] {
			u, v = v, u
		}
		if tree.top[u] == tree.top[v] {
			return u
		}
		v = tree.Parent[tree.top[v]]
	}
}

func (tree *Tree) Dist(u, v int, weighted bool) int {
	if weighted {
		return tree.DepthWeighted[u] + tree.DepthWeighted[v] - 2*tree.DepthWeighted[tree.LCA(u, v)]
	}
	return tree.Depth[u] + tree.Depth[v] - 2*tree.Depth[tree.LCA(u, v)]
}

// k: 0-based
//  如果不存在第k个祖先,返回-1
func (tree *Tree) KthAncestor(root, k int) int {
	if k > tree.Depth[root] {
		return -1
	}
	for {
		u := tree.top[root]
		if tree.LID[root]-k >= tree.LID[u] {
			return tree.idToNode[tree.LID[root]-k]
		}
		k -= tree.LID[root] - tree.LID[u] + 1
		root = tree.Parent[u]
	}
}

// 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed)
//  返回跳到的节点,如果不存在这样的节点,返回-1
func (tree *Tree) Jump(from, to, step int) int {
	if step == 1 {
		if from == to {
			return -1
		}
		if tree.IsInSubtree(to, from) {
			return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1)
		}
		return tree.Parent[from]
	}
	c := tree.LCA(from, to)
	dac := tree.Depth[from] - tree.Depth[c]
	dbc := tree.Depth[to] - tree.Depth[c]
	if step > dac+dbc {
		return -1
	}
	if step <= dac {
		return tree.KthAncestor(from, step)
	}
	return tree.KthAncestor(to, dac+dbc-step)
}

func (tree *Tree) CollectChild(root int) []int {
	res := []int{}
	for _, e := range tree.Tree[root] {
		next := e[0]
		if next != tree.Parent[root] {
			res = append(res, next)
		}
	}
	return res
}

// 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组.
//  !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序.
func (tree *Tree) GetPathDecomposition(u, v int, vertex bool) [][2]int {
	up, down := [][2]int{}, [][2]int{}
	for {
		if tree.top[u] == tree.top[v] {
			break
		}
		if tree.LID[u] < tree.LID[v] {
			down = append(down, [2]int{tree.LID[tree.top[v]], tree.LID[v]})
			v = tree.Parent[tree.top[v]]
		} else {
			up = append(up, [2]int{tree.LID[u], tree.LID[tree.top[u]]})
			u = tree.Parent[tree.top[u]]
		}
	}
	edgeInt := 1
	if vertex {
		edgeInt = 0
	}
	if tree.LID[u] < tree.LID[v] {
		down = append(down, [2]int{tree.LID[u] + edgeInt, tree.LID[v]})
	} else if tree.LID[v]+edgeInt <= tree.LID[u] {
		up = append(up, [2]int{tree.LID[u], tree.LID[v] + edgeInt})
	}
	for i := 0; i < len(down)/2; i++ {
		down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i]
	}
	return append(up, down...)
}

func (tree *Tree) GetPath(u, v int) []int {
	res := []int{}
	composition := tree.GetPathDecomposition(u, v, true)
	for _, e := range composition {
		a, b := e[0], e[1]
		if a <= b {
			for i := a; i <= b; i++ {
				res = append(res, tree.idToNode[i])
			}
		} else {
			for i := a; i >= b; i-- {
				res = append(res, tree.idToNode[i])
			}
		}
	}
	return res
}

func (tree *Tree) SubtreeSize(u int) int {
	return tree.RID[u] - tree.LID[u]
}

// child 是否在 root 的子树中 (child和root不能相等)
func (tree *Tree) IsInSubtree(child, root int) bool {
	return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root]
}

func (tree *Tree) ELID(u int) int {
	return 2*tree.LID[u] - tree.Depth[u]
}

func (tree *Tree) ERID(u int) int {
	return 2*tree.RID[u] - tree.Depth[u] - 1
}

func (tree *Tree) build(cur, pre, dep, dist int) int {
	subSize, heavySize, heavySon := 1, 0, -1
	for _, e := range tree.Tree[cur] {
		next, weight := e[0], e[1]
		if next != pre {
			nextSize := tree.build(next, cur, dep+1, dist+weight)
			subSize += nextSize
			if nextSize > heavySize {
				heavySize, heavySon = nextSize, next
			}
		}
	}
	tree.Depth[cur] = dep
	tree.DepthWeighted[cur] = dist
	tree.heavySon[cur] = heavySon
	tree.Parent[cur] = pre
	return subSize
}

func (tree *Tree) markTop(cur, top int) {
	tree.top[cur] = top
	tree.LID[cur] = tree.timer
	tree.idToNode[tree.timer] = cur
	tree.timer++
	if tree.heavySon[cur] != -1 {
		tree.markTop(tree.heavySon[cur], top)
		for _, e := range tree.Tree[cur] {
			next := e[0]
			if next != tree.heavySon[cur] && next != tree.Parent[cur] {
				tree.markTop(next, next)
			}
		}
	}
	tree.RID[cur] = tree.timer
}

type _FTree struct {
	n    int
	data []Abel
	unit Abel
}

func _NewFTree(n int, nums ...Abel) *_FTree {
	fw := &_FTree{n: n, unit: e()}
	if len(nums) == 0 {
		nums = make([]Abel, n)
		for i := range nums {
			nums[i] = fw.unit
		}
	}
	fw.build(nums)
	return fw
}

// [0, right)
func (fw *_FTree) QueryPrefix(right int) Abel {
	if right > fw.n {
		right = fw.n
	}
	res := fw.unit
	for right > 0 {
		res = op(res, fw.data[right-1])
		right &= right - 1
	}
	return res
}

// [left, right)
func (fw *_FTree) QueryRange(left, right int) Abel {
	if left < 0 {
		left = 0
	}
	if right > fw.n {
		right = fw.n
	}
	if left == 0 {
		return fw.QueryPrefix(right)
	}
	if left > right {
		return fw.unit
	}
	pos, neg := fw.unit, fw.unit
	for right > left {
		pos = op(pos, fw.data[right-1])
		right &= right - 1
	}
	for left > right {
		neg = op(neg, fw.data[left-1])
		left &= left - 1
	}
	return op(pos, inv(neg))
}

func (fw *_FTree) Update(i int, x Abel) {
	for i++; i <= fw.n; i += i & -i {
		fw.data[i-1] = op(fw.data[i-1], x)
	}
}

func (fw *_FTree) build(nums []Abel) {
	n := fw.n
	fw.data = append(fw.data, nums...)
	for i := 1; i <= n; i++ {
		j := i + (i & -i)
		if j <= n {
			fw.data[j-1] = op(fw.data[i-1], fw.data[j-1])
		}
	}
}
0