結果
| 問題 |
No.1641 Tree Xor Query
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-03-25 11:51:04 |
| 言語 | Go (1.23.4) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,158 bytes |
| コンパイル時間 | 14,681 ms |
| コンパイル使用メモリ | 232,472 KB |
| 実行使用メモリ | 11,912 KB |
| 最終ジャッジ日時 | 2024-09-18 19:08:20 |
| 合計ジャッジ時間 | 16,198 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | RE * 18 |
ソースコード
// Add
// QueryPath
// QuerySubtree
package main
import (
"bufio"
"fmt"
"os"
)
func main2() {
tree := NewTree(5)
tree.AddEdge(0, 1, 1)
tree.AddEdge(0, 2, 1)
tree.AddEdge(1, 3, 1)
tree.AddEdge(1, 4, 1)
tree.Build(0)
A := NewTreeAbelGroup(tree, []Abel{1, 2, 3, 4, 5}, true, true, true)
fmt.Println(A.QueryPath(0, 4))
}
func main() {
// https://yukicoder.me/problems/no/1641
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, q int
fmt.Fscan(in, &n, &q)
tree := NewTree(n)
for i := 0; i < n-1; i++ {
var a, b int
fmt.Fscan(in, &a, &b)
tree.AddEdge(a-1, b-1, 1)
}
tree.Build(0)
A := make([]Abel, n)
for i := 0; i < n; i++ {
fmt.Fscan(in, &A[i])
}
TA := NewTreeAbelGroup(tree, A, true, false, true)
for i := 0; i < q; i++ {
var t, x, y int
fmt.Fscan(in, &t, &x, &y)
x--
if t == 1 {
TA.Add(x, Abel(y))
}
if t == 2 {
fmt.Fprintln(out, TA.QuerySubtree(x))
}
}
}
type Abel = int
func e() Abel { return 0 }
func op(e1, e2 Abel) Abel { return e1 ^ e2 }
func inv(e Abel) Abel { return e } // 如果只查询前缀, 可以不需要是群
type TreeAbelGroup struct {
tree *Tree
n int
isVertex bool
pathQuery bool
subtreeQuery bool
bit *_FTree
bitSubtree *_FTree
unit Abel
}
// 静态树的路径查询,维护的量需要满足阿贝尔群的性质.
// data: 顶点的值, 或者边的值.(边的编号为两个定点中较深的那个点的编号)
// isVertex: data是否为顶点的值以及查询的时候是否是顶点权值.
func NewTreeAbelGroup(tree *Tree, data []Abel, isVertex, pathQuery, subtreeQuery bool) *TreeAbelGroup {
res := &TreeAbelGroup{
tree: tree, n: len(tree.Tree),
isVertex: isVertex,
pathQuery: pathQuery, subtreeQuery: subtreeQuery,
unit: e(),
}
if pathQuery {
bitRaw := make([]Abel, 2*res.n)
if isVertex {
for v := 0; v < res.n; v++ {
bitRaw[tree.ELID(v)] = data[v]
bitRaw[tree.ERID(v)] = inv(data[v])
}
} else {
for i := range bitRaw {
bitRaw[i] = res.unit
}
for e := 0; e < res.n-1; e++ {
v := tree.EidtoV(e)
bitRaw[tree.ELID(v)] = data[e]
bitRaw[tree.ERID(v)] = inv(data[e])
}
}
res.bit = _NewFTree(len(bitRaw), bitRaw...)
}
if subtreeQuery {
bitRaw := make([]Abel, res.n)
if isVertex {
for v := 0; v < res.n; v++ {
bitRaw[tree.LID[v]] = data[v]
}
} else {
for i := range bitRaw {
bitRaw[i] = res.unit
}
for e := 0; e < res.n-1; e++ {
v := tree.EidtoV(e)
bitRaw[tree.LID[v]] = data[e]
}
}
res.bitSubtree = _NewFTree(len(bitRaw), bitRaw...)
}
return res
}
func (ta *TreeAbelGroup) Add(i int, x Abel) {
v := i
if !ta.isVertex {
v = ta.tree.EidtoV(i)
}
if ta.pathQuery {
inv_x := inv(x)
ta.bit.Update(ta.tree.ELID(v), x)
ta.bit.Update(ta.tree.ERID(v), inv_x)
}
if ta.subtreeQuery {
ta.bitSubtree.Update(ta.tree.LID[v], x)
}
}
func (ta *TreeAbelGroup) QueryPath(from, to int) Abel {
lca := ta.tree.LCA(from, to)
x1 := ta.bit.QueryRange(ta.tree.ELID(lca)+1, ta.tree.ELID(from)+1)
offset := 1
if ta.isVertex {
offset = 0
}
x2 := ta.bit.QueryRange(ta.tree.ELID(lca)+offset, ta.tree.ELID(to)+1)
return op(x1, x2)
}
func (ta *TreeAbelGroup) QuerySubtree(root int) Abel {
l, r := ta.tree.LID[root], ta.tree.RID[root]
offset := 1
if ta.isVertex {
offset = 0
}
return ta.bitSubtree.QueryRange(l+offset, r)
}
type Tree struct {
Tree [][][2]int // (next, weight)
Edges [][3]int // (u, v, w)
Depth, DepthWeighted []int
Parent []int
LID, RID []int // 欧拉序[in,out)
idToNode []int
top, heavySon []int
timer int
}
func NewTree(n int) *Tree {
tree := make([][][2]int, n)
lid := make([]int, n)
rid := make([]int, n)
idToNode := make([]int, n)
top := make([]int, n) // 所处轻/重链的顶点(深度最小),轻链的顶点为自身
depth := make([]int, n) // 深度
depthWeighted := make([]int, n)
parent := make([]int, n) // 父结点
heavySon := make([]int, n) // 重儿子
edges := make([][3]int, 0, n-1)
for i := range parent {
parent[i] = -1
}
return &Tree{
Tree: tree,
Depth: depth,
DepthWeighted: depthWeighted,
Parent: parent,
LID: lid,
RID: rid,
idToNode: idToNode,
top: top,
heavySon: heavySon,
Edges: edges,
}
}
// 添加无向边 u-v, 边权为w.
func (tree *Tree) AddEdge(u, v, w int) {
tree.Tree[u] = append(tree.Tree[u], [2]int{v, w})
tree.Tree[v] = append(tree.Tree[v], [2]int{u, w})
tree.Edges = append(tree.Edges, [3]int{u, v, w})
}
// 添加有向边 u->v, 边权为w.
func (tree *Tree) AddDirectedEdge(u, v, w int) {
tree.Tree[u] = append(tree.Tree[u], [2]int{v, w})
tree.Edges = append(tree.Edges, [3]int{u, v, w})
}
// root:0-based
// 当root设为-1时,会从0开始遍历未访问过的连通分量
func (tree *Tree) Build(root int) {
if root != -1 {
tree.build(root, -1, 0, 0)
tree.markTop(root, root)
} else {
for i := 0; i < len(tree.Tree); i++ {
if tree.Parent[i] == -1 {
tree.build(i, -1, 0, 0)
tree.markTop(i, i)
}
}
}
}
// 返回 root 的欧拉序区间, 左闭右开, 0-indexed.
func (tree *Tree) Id(root int) (int, int) {
return tree.LID[root], tree.RID[root]
}
// 返回边 u-v 对应的 欧拉序起点编号, 0-indexed.
func (tree *Tree) Eid(u, v int) int {
if tree.LID[u] > tree.LID[v] {
return tree.LID[u]
}
return tree.LID[v]
}
// 较深的那个点作为边的编号.
func (tree *Tree) EidtoV(eid int) int {
e := tree.Edges[eid]
u, v := e[0], e[1]
if tree.Parent[u] == v {
return u
}
return v
}
func (tree *Tree) LCA(u, v int) int {
for {
if tree.LID[u] > tree.LID[v] {
u, v = v, u
}
if tree.top[u] == tree.top[v] {
return u
}
v = tree.Parent[tree.top[v]]
}
}
func (tree *Tree) Dist(u, v int, weighted bool) int {
if weighted {
return tree.DepthWeighted[u] + tree.DepthWeighted[v] - 2*tree.DepthWeighted[tree.LCA(u, v)]
}
return tree.Depth[u] + tree.Depth[v] - 2*tree.Depth[tree.LCA(u, v)]
}
// k: 0-based
// 如果不存在第k个祖先,返回-1
func (tree *Tree) KthAncestor(root, k int) int {
if k > tree.Depth[root] {
return -1
}
for {
u := tree.top[root]
if tree.LID[root]-k >= tree.LID[u] {
return tree.idToNode[tree.LID[root]-k]
}
k -= tree.LID[root] - tree.LID[u] + 1
root = tree.Parent[u]
}
}
// 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed)
// 返回跳到的节点,如果不存在这样的节点,返回-1
func (tree *Tree) Jump(from, to, step int) int {
if step == 1 {
if from == to {
return -1
}
if tree.IsInSubtree(to, from) {
return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1)
}
return tree.Parent[from]
}
c := tree.LCA(from, to)
dac := tree.Depth[from] - tree.Depth[c]
dbc := tree.Depth[to] - tree.Depth[c]
if step > dac+dbc {
return -1
}
if step <= dac {
return tree.KthAncestor(from, step)
}
return tree.KthAncestor(to, dac+dbc-step)
}
func (tree *Tree) CollectChild(root int) []int {
res := []int{}
for _, e := range tree.Tree[root] {
next := e[0]
if next != tree.Parent[root] {
res = append(res, next)
}
}
return res
}
// 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组.
// !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序.
func (tree *Tree) GetPathDecomposition(u, v int, vertex bool) [][2]int {
up, down := [][2]int{}, [][2]int{}
for {
if tree.top[u] == tree.top[v] {
break
}
if tree.LID[u] < tree.LID[v] {
down = append(down, [2]int{tree.LID[tree.top[v]], tree.LID[v]})
v = tree.Parent[tree.top[v]]
} else {
up = append(up, [2]int{tree.LID[u], tree.LID[tree.top[u]]})
u = tree.Parent[tree.top[u]]
}
}
edgeInt := 1
if vertex {
edgeInt = 0
}
if tree.LID[u] < tree.LID[v] {
down = append(down, [2]int{tree.LID[u] + edgeInt, tree.LID[v]})
} else if tree.LID[v]+edgeInt <= tree.LID[u] {
up = append(up, [2]int{tree.LID[u], tree.LID[v] + edgeInt})
}
for i := 0; i < len(down)/2; i++ {
down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i]
}
return append(up, down...)
}
func (tree *Tree) GetPath(u, v int) []int {
res := []int{}
composition := tree.GetPathDecomposition(u, v, true)
for _, e := range composition {
a, b := e[0], e[1]
if a <= b {
for i := a; i <= b; i++ {
res = append(res, tree.idToNode[i])
}
} else {
for i := a; i >= b; i-- {
res = append(res, tree.idToNode[i])
}
}
}
return res
}
func (tree *Tree) SubtreeSize(u int) int {
return tree.RID[u] - tree.LID[u]
}
// child 是否在 root 的子树中 (child和root不能相等)
func (tree *Tree) IsInSubtree(child, root int) bool {
return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root]
}
func (tree *Tree) ELID(u int) int {
return 2*tree.LID[u] - tree.Depth[u]
}
func (tree *Tree) ERID(u int) int {
return 2*tree.RID[u] - tree.Depth[u] - 1
}
func (tree *Tree) build(cur, pre, dep, dist int) int {
subSize, heavySize, heavySon := 1, 0, -1
for _, e := range tree.Tree[cur] {
next, weight := e[0], e[1]
if next != pre {
nextSize := tree.build(next, cur, dep+1, dist+weight)
subSize += nextSize
if nextSize > heavySize {
heavySize, heavySon = nextSize, next
}
}
}
tree.Depth[cur] = dep
tree.DepthWeighted[cur] = dist
tree.heavySon[cur] = heavySon
tree.Parent[cur] = pre
return subSize
}
func (tree *Tree) markTop(cur, top int) {
tree.top[cur] = top
tree.LID[cur] = tree.timer
tree.idToNode[tree.timer] = cur
tree.timer++
if tree.heavySon[cur] != -1 {
tree.markTop(tree.heavySon[cur], top)
for _, e := range tree.Tree[cur] {
next := e[0]
if next != tree.heavySon[cur] && next != tree.Parent[cur] {
tree.markTop(next, next)
}
}
}
tree.RID[cur] = tree.timer
}
type _FTree struct {
n int
data []Abel
unit Abel
}
func _NewFTree(n int, nums ...Abel) *_FTree {
fw := &_FTree{n: n, unit: e()}
if len(nums) == 0 {
nums = make([]Abel, n)
for i := range nums {
nums[i] = fw.unit
}
}
fw.build(nums)
return fw
}
// [0, right)
func (fw *_FTree) QueryPrefix(right int) Abel {
if right > fw.n {
right = fw.n
}
res := fw.unit
for right > 0 {
res = op(res, fw.data[right-1])
right &= right - 1
}
return res
}
// [left, right)
func (fw *_FTree) QueryRange(left, right int) Abel {
if left < 0 {
left = 0
}
if right > fw.n {
right = fw.n
}
if left == 0 {
return fw.QueryPrefix(right)
}
if left > right {
return fw.unit
}
pos, neg := fw.unit, fw.unit
for right > left {
pos = op(pos, fw.data[right-1])
right &= right - 1
}
for left > right {
neg = op(neg, fw.data[left-1])
left &= left - 1
}
return op(pos, inv(neg))
}
func (fw *_FTree) Update(i int, x Abel) {
for i++; i <= fw.n; i += i & -i {
fw.data[i-1] = op(fw.data[i-1], x)
}
}
func (fw *_FTree) build(nums []Abel) {
n := fw.n
fw.data = append(fw.data, nums...)
for i := 1; i <= n; i++ {
j := i + (i & -i)
if j <= n {
fw.data[j-1] = op(fw.data[i-1], fw.data[j-1])
}
}
}