結果

問題 No.2266 Fractions (hard)
ユーザー chineristACchineristAC
提出日時 2023-04-08 00:38:21
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 6,569 bytes
コンパイル時間 739 ms
コンパイル使用メモリ 81,852 KB
実行使用メモリ 80,628 KB
最終ジャッジ日時 2024-10-03 09:12:57
合計ジャッジ時間 45,523 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 322 ms
78,848 KB
testcase_01 TLE -
testcase_02 AC 3,705 ms
78,228 KB
testcase_03 AC 77 ms
71,552 KB
testcase_04 AC 277 ms
77,712 KB
testcase_05 AC 191 ms
78,592 KB
testcase_06 AC 752 ms
80,360 KB
testcase_07 AC 387 ms
78,696 KB
testcase_08 AC 259 ms
79,532 KB
testcase_09 AC 131 ms
77,952 KB
testcase_10 AC 155 ms
78,632 KB
testcase_11 AC 102 ms
73,216 KB
testcase_12 AC 264 ms
78,576 KB
testcase_13 TLE -
testcase_14 AC 2,817 ms
77,752 KB
testcase_15 AC 3,140 ms
78,000 KB
testcase_16 AC 5,634 ms
80,628 KB
testcase_17 AC 4,488 ms
79,236 KB
testcase_18 TLE -
testcase_19 AC 5,886 ms
80,284 KB
testcase_20 AC 2,608 ms
78,092 KB
testcase_21 TLE -
testcase_22 AC 3,747 ms
79,832 KB
testcase_23 AC 3,533 ms
78,276 KB
testcase_24 AC 3,534 ms
77,908 KB
testcase_25 TLE -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import gcd,log

input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

from collections import deque
class Dinic:
    def __init__(self, N):
        self.N = N
        self.G = [[] for i in range(N)]

    def add_edge(self, fr, to, cap):
        forward = [to, cap, None]
        forward[2] = backward = [fr, 0, forward]
        self.G[fr].append(forward)
        self.G[to].append(backward)

    def add_multi_edge(self, v1, v2, cap1, cap2):
        edge1 = [v2, cap1, None]
        edge1[2] = edge2 = [v1, cap2, edge1]
        self.G[v1].append(edge1)
        self.G[v2].append(edge2)

    def bfs(self, s, t):
        self.level = level = [None]*self.N
        deq = deque([s])
        level[s] = 0
        G = self.G
        while deq:
            v = deq.popleft()
            lv = level[v] + 1
            for w, cap, _ in G[v]:
                if cap and level[w] is None:
                    level[w] = lv
                    deq.append(w)
        return level[t] is not None

    def dfs(self, v, t, f):
        if v == t:
            return f
        level = self.level
        for e in self.it[v]:
            w, cap, rev = e
            if cap and level[v] < level[w]:
                d = self.dfs(w, t, min(f, cap))
                if d:
                    e[1] -= d
                    rev[1] += d
                    return d
        return 0

    def flow(self, s, t):
        flow = 0
        INF = 10**9 + 7
        G = self.G
        while self.bfs(s, t):
            *self.it, = map(iter, self.G)
            f = INF
            while f:
                f = self.dfs(s, t, INF)
                flow += f
        return flow

def floor_sum(n: int, m: int, a: int, b: int) -> int:
    ans = 0

    if a >= m:
        ans += (n - 1) * n * (a // m) // 2
        a %= m

    if b >= m:
        ans += n * (b // m)
        b %= m

    y_max = (a * n + b) // m
    x_max = y_max * m - b

    if y_max == 0:
        return ans

    ans += (n - (x_max + a - 1) // a) * y_max
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a)

    return ans

M = 10**4 + 1
mebius = [1] * (M+1)
prime = [True] * (M+1)
for p in range(2,M+1):
    if not prime[p]:
        continue
    for n in range(p,M+1,p):
        if n%(p*p) == 0:
            mebius[n] = 0
        mebius[n] *= -1
        prime[n] = False



mebius_cum = [mebius[n] for n in range(M+1)]
mebius[0] = 0
for n in range(1,M):
    mebius_cum[n+1] += mebius_cum[n]

for N in range(1,100):
    tmp = 0
    for n in range(1,N+1):
        tmp += mebius_cum[N//n]
    assert tmp == 1


def solve(N,K):
    lower = (0,1)
    upper = (1,0)

    calc = 0

    B = int(N**.5)

    big_mertens = [0] * (B+10)
    for n in range(1,B+10)[::-1]:
        """
        Mertens(N/n)を計算

        
        sum M(N/ni) for i in 1...N/n = 1
        を利用
        """
        tmp = 0
        for i in range(2,N//n+1):
            if M < N//(n*i) :
                tmp += big_mertens[n*i]
            else:
                break
        for Q in range(1,M+1):
            """
            q <= N/(n*i) < q+1
            N//(q+1)*i+1 <= i <= N//n*q
            """

            L = max(N//((Q+1)*n)+1,2)
            R = min(N//(Q*n),N//n)
            if L<=R:
                tmp += (R-L+1) * mebius_cum[Q]
                
        big_mertens[n] = 1 - tmp
    


    def cond(p,q):
        nonlocal calc
        calc += 1
        #assert p <= N  and q <= N
        """
        ・qx<=py
        ・1 <= x,y <= N
        ・gcd(x,y)=1
        をみたすx,yを数える

        gcd(x,y)がkの倍数とすると

        sum((N//k)-(qi)//p for i in range(1,(N//k)+1))
        -> floor_sum

        +メビウス変換
        """

        res = 0
        B = int(N**.5)
        for k in range(1,B+1):
            t = N//k
            tmp = 0

            ok = -1
            ng = t
            while ng-ok>1:
                mid = (ok+ng)//2
                if (q*mid+q-1)//p <= t:
                    ok = mid
                else:
                    ng = mid
            
            
            tmp = t * ng - floor_sum(ng,p,q,q-1)

            
            
            res += tmp * mebius[k]

        
        
        
        for t in range(1,N//(B+1)+1):
            
            k_l = N//(t+1)+1
            k_r = N//t

            tmp = 0
            ok = -1
            ng = t
            while ng-ok>1:
                mid = (ok+ng)//2
                if (q*mid+q-1)//p <= t:
                    ok = mid
                else:
                    ng = mid
            
            
            tmp = t * ng - floor_sum(ng,p,q,q-1)
            c = 0
            if k_r <= M:
                c += mebius_cum[k_r]
            else:
                c += big_mertens[t]
            if k_l-1 <= M:
                c -= mebius_cum[k_l-1]
            else:
                c -= big_mertens[t+1]
            res += tmp * c

        
        return res

    
    if cond(N,1) < K:
        print(-1)
        return 

    while True:
        a,b = lower
        c,d = upper
        p,q = (a+c,b+d)


        check = cond(p,q)
        if  check < K:
            """
            右に潜る
            """
            ok = 1
            if d!=0:
                ng = min((N-b)//d,(N-a)//c) + 1
            else:
                ng = (N-a)//c + 1
            while ng-ok>1:
                mid = (ok+ng)//2
                p,q = a+c*mid,b+d*mid
                xxx = cond(p,q)
                if  xxx < K:
                    ok = mid
                elif K < xxx:
                    ng = mid
                else:
                    p,q = a+c*mid,b+d*mid
                    print("{}/{}".format(p,q))
                    return 
            lower = (a+c*ok,b+d*ok)
        elif K < check:
            """
            左に潜る
            """
            ok = 1
            if a!=0:
                ng = min((N-d)//b,(N-c)//a) + 1
            else:
                ng = (N-d)//b + 1
            
            
            
            while ng-ok>1:
                mid = (ok+ng)//2
                p,q = a*mid+c,b*mid+d
                if cond(p,q) > K:
                    ok = mid
                else:
                    ng = mid
            upper = (a*ok+c,b*ok+d)
        else:
            print("{}/{}".format(p,q))
            return 

for _ in range(1):
    N,K = mi()
    solve(N,K)
    
    
0