結果
問題 | No.2290 UnUnion Find |
ユーザー | rsk0315 |
提出日時 | 2023-05-06 23:58:53 |
言語 | Rust (1.77.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 31,349 bytes |
コンパイル時間 | 13,347 ms |
コンパイル使用メモリ | 379,112 KB |
実行使用メモリ | 16,472 KB |
最終ジャッジ日時 | 2024-05-03 06:22:31 |
合計ジャッジ時間 | 20,106 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | AC | 18 ms
10,368 KB |
testcase_03 | AC | 28 ms
13,180 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
ソースコード
// This code is generated by [rsk0315/cargo-atcoder](https://github.com/rsk0315/cargo-atcoder) forked from [tanakh/cargo-atcoder](https://github.com/tanakh/cargo-atcoder). // Original source code: const _: &str = r#" use std::io::BufRead; use proconio::{ fastout, input, marker::Usize1, source::{Readable, Source}, }; use nekolib::{ds::UnionFind, traits::DisjointSet}; #[derive(Clone, Copy, Eq, PartialEq)] enum Query { Q1(usize, usize), Q2(usize), } use Query::{Q1, Q2}; impl Readable for Query { type Output = Query; fn read<R: BufRead, S: Source<R>>(source: &mut S) -> Self::Output { let ty: u32 = source.next_token_unwrap().parse().unwrap(); if ty == 1 { input! { from source, x: Usize1, y: Usize1, } Q1(x, y) } else if ty == 2 { input! { from source, x: Usize1, } Q2(x) } else { unreachable!() } } } #[fastout] fn main() { input! { n: usize, query: [Query], } let mut next: Vec<_> = (0..n).map(|i| (i + 1) % n).collect(); let mut prev: Vec<_> = (0..n).map(|i| (i + n - 1) % n).collect(); let mut uf = UnionFind::new(n); let mut res = vec![]; for &q in &query { match q { Q1(u, v) => { let ru = uf.repr(u); let rv = uf.repr(v); if ru == rv { continue; } uf.unite(u, v); let new = uf.repr(u); assert!([ru, rv].contains(&new)); let old = ru ^ rv ^ new; next[prev[old]] = next[old]; prev[next[old]] = prev[old]; } Q2(u) => res.push((uf.count(u) < n).then(|| next[u])), } } for res in res { if let Some(res) = res { println!("0"); } else { println!("-1"); } } } "#; fn main() { let exe = std::env::temp_dir().join("binA4532D7D"); std::io::Write::write_all(&mut std::fs::File::create(&exe).unwrap(), &decode(BIN)).unwrap(); #[cfg(unix)] fn executable(exe: &std::path::Path) { std::fs::set_permissions(exe, std::os::unix::fs::PermissionsExt::from_mode(0o755)).unwrap(); } #[cfg(not(unix))] fn executable(_: &std::path::Path) {} executable(&exe); std::process::exit(std::process::Command::new(&exe).status().unwrap().code().unwrap()) } fn decode(v: &str) -> Vec<u8> { let mut ret = vec![]; let mut buf = 0; let mut tbl = vec![64; 256]; for i in 0..64 { tbl[TBL[i] as usize] = i as u8; } for (i, c) in v.bytes().filter_map(|c| { let c = tbl[c as usize]; if c < 64 { Some(c) } else { None } }).enumerate() { match i % 4 { 0 => buf = c << 2, 1 => { ret.push(buf | c >> 4); buf = c << 4; } 2 => { ret.push(buf | c >> 2); buf = c << 6; } 3 => ret.push(buf | c), _ => unreachable!(), } } ret } const TBL: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; const BIN: &str = " f0VMRgIBAQAAAAAAAAAAAAMAPgABAAAAIPwAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAOAADAAAA AAAAAAEAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAABIsQAAAAAAAAAQAAAAAAAA AQAAAAUAAAAAAAAAAAAAAADAAAAAAAAAAMAAAAAAAAC/TgAAAAAAAL9OAAAAAAAAABAAAAAAAABR5XRk BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAK8mgKpVUFgh rBIOFgAAAADwqAAANmkAAOACAACvAAAADgAAABoDAD+RRYRoPYmm2orhgzJO2QlKPWzn6t5gqkdhpzQY JQvAkJGxYPcNRvlgaGepVpt7Je4YmqEYXdT4tKcG6oKstq1GKCDEJz3EAvEmHT3nxRFSDUpMUzSJ/+U0 IsYCqsWSzx39YxolS8ggFj3a0D4mTrCdXltmVx6i3rJ+e19aVQaTI7IuKjJOJH710djaiKPJm0OzKPMZ 8mMw/5Xm/2j3oOe4EDaJQGRdaPOGH+AADwAATwMAAA4AAAAaAwAXmwkmM3GmCYALHTJPNRq/liYhnSgP FX2WO3CstB0TYQRuPnDn/eIVCsd0PzwJH8GA1GBgnAQYAAKY6CCNGYYh6yMwpx9YZxyFkuCrC9gfyW0k s3NWuLF3lzbZQIF0gONhuDuE3/5n1x6k+bBRezYhS3+A4d6tf5gz7mjD+PQt6CZa4mP4DytGORXOAtDi Czxh+5NpmvJgmDFJS/oYAr+vmUGmhECDEOA+aNf6Vvyyl7Q/lwjWmRbRSGUz1SdTeulF8CNVeYEKAG4g wqrfMDkj2Mc2FL4dcUDNJfeYJ05iwlX8JoMH6AOFPZq5t9sz/5+XmrpZi+zZLa+Y596pMJ5oZWZoCtF9 DUT0eklntBwlKog3SQgVvhxzHLwV9pMvLDzqRJOYiMLzHbu6KqVjtlHyJIoHSbA7NAJG5fmHs0wcWh2q v5011+J51TrGEyAYKrEDFoQAAdvkCSACMoXBNl1Hmgx8sHYxOweL30UKHHoXbviWyKrhudQ5wtS5Y9gL YT1dUIQV9LZovZ33UF3KUj8MiJq4/LafBHiC6V9ZihI1wG5C6uMTxWsx5g78f/v9shY8YMul6v26SJaK Cdj0BkEu6qtigL50u4hnvIVHVPpgtXJxa44AuGfqsEvvknYxwZn5jDMb9n4D4kmeVh2gcc3XZpDWuwXv 4boeXKTyaAIbBu8ZQstiggSt3mRtBdkeP+AMtLc4HUiRBT729O33dtywP0pejRDZ10nzvozEqZThiyX2 BTdHEyxxPObag0UbG/H2kxPBWB2DS8xP0uU/sjMLnBaDNmVac68OoR7k+zUzcJq5NeeAy03jYuQ66TZ+ A72+pseTtwfvJ7Ekl8bArp/gXTfhnag1R1TgB0DTdrZrlo+pHmNLBXGIJlroT79xDOodshRSkw0bT12j GApKafySvgMVW3YEfSpHZWbr6u/aRWALz6bLAeai6b9MJNNMHXk4EbIvPH0HDnZLDfqPjBI8vOZ8TTwu FijV/Lg7ehkDGI7NAzUaeDrt1FbC2W2A2puOIuNcK18jmRiTSotpSO4LZ0TICg5odoLfaagCHJfjLRHT eKDiN93Bam/bcG69DZQZh79I9E8intebEO4Wz7nxNsN/dpkGpT+b8eZYNmkAANQyAAAOSQEAGgMAJCDZ gIJasTzXfX6qes5l8V6R5rRNH+1vUQlflUUfDmKbSbOwnfquYC+LGdBJXFkdPL5gjrvQxK2lC7XAXqwN 9y+57Zf8CsGt0tUThWiBm2BEkdOZujmSN1rYrcOcHT7w3U1z9AXI9vcnGydLyz6sZEZ4xIqm0AsalGmX JXKfBkwX2ziGJHIOmuW2xZiA3JzeoB5YIKQGzQ2N7e/J4DahmeQ+jbUJZnQ6If6MWrzKYmEUrHUSKCNY /eGD7+9nchH6W996vcxjQ/7+sG+6/3nL1ES7kI5BC3xXvz0At0VJknCMHL0o/t8IPAkVYgsQpRcOYot/ kbuRBIwR1B/4mVwFwCukExYq4Fnb8NqoZZiqDWHeQ5y8ml7lUGyK7GY4oOy5mfFO7A5EJUPxCSo9EECi tBaQRAIqBJ0ZKe7IKaRoMQZx+ZNzA+9pDBBuTwR0ArrHO0ED2gN249LaKGOa8aaRj9uwbx3L/daZP1A5 Ezrca3JgPsBCKjMqBmiULmHs9sI5kyWOaaUxVZ96g/iUgS10D9leuwb74NsAnWo72GDYfFdS9YJrbqbo ocqD7vVM71R4ITprGAjOC7+sVKl1u3LuE0//HEZH+gvBQ1odJPkcO1MzxxpV9z8zTQ0huBSKKem6AkU+ lG31VbOVp6xbC5us8rIu/cM6PnqoXGr+xIGc8qrXq6ZQhe5kQEFkuKDQkoh1kAvx8PU6Z9aQCNzz0FRb TLaXPsqPicwDQBRtW5nvgCw7a9ih0aNBu13xYbl0jUHSZdjFQaI+KlT4QT39Bx4GhZ68EQI+sndBfkse ygmA/D/yPOWygeP3pGPpo8C8mei1JTcvEqLAFlE0oVGfkF883AXMA3Rrd2qJpXaWHPk8vnhH579laon3 9KHa+Jbt2PAwR58t7RL7qI1Ep9wHLMwZBCKVlQtRfe+Dy81rswCS0Y6p8pSuZj2PUh9fokqlDeVogE2v K1RkZRjMloW0wTmi8GUwYkZO0fmnIx9TAbRygNfzdsTrNdOughZONsP/QOJ6cD3aqAmqzx+fFZLim1nj 2/E7Ix8phm9PwYxRm+3zQENvBwBLfTcbSsyXAZbQ5FeSbcV0uZs3v/hQh0AKrE1NYx2kzz34zmdRZwzO qQVjNBtU6go08Pu0kVTYbB4wyJsazNINjwq4Ej3P558V3u3NeXNWEKdQrIZo7nQmPtGSaVjc7AUrIH30 NJcGe/TeOShWO4LMLoVwtCF3tMnSzYlyht+JY+yJUExna02rakCNXm3aJ0zMetM/2uesNQmPkIsQ45zb 3AUjvsvwSk/ECf+5ScjBivTWHyQ32n0roAmaMBs0RInm1KCpmB5JYoCDbA+tCKXd9hycoZpfIKd6C3rD sekWhPKyxq0kOv9z7aQ3LdyITJf0mwiMaUyErsKjLypAaLBcn4bmh9XhdRlrXloCgJOrUevxZyKUbajg TB6OEsmbqnIpBfdUt5z51bLaoaYW362qnv1ciOIbXZPwu97Lmq9Mccve3r3JSJWLSQfC2ldwYSW9E2fF s1frNDtD4jgEvefzJyYhRwW8SwvMK4auZiFCfVL04bDoJj1amb81daiVnKzh0a//LznZ132hswAePMHs uCUZ83ZAMILsNYpWs/D1xYclrQULNFWicSqfTXHScVg62p43qjlRf32ATGC5ztD+vvOHZ8rZWHKYI5eE sVz1UDoNUovXTymJByq3X2fSiOy+1MWSKMOcB5pWt88H69MHY+AZl8iQwX7Oh2FvsuKu2uvMxyTCtfpZ j6UxXSXfi4DntBzE73gZ+RpI/X9N4IgruHq/uWY+umc5Xra3fnEei9Mkd7SRqBewhUznYrcyM22uagtP 8Fu2EiDva++VJ1X9NNkmPJt2T7AMdLoI9NhMsy2mCQD/w5+/jH3sTem1oos9rOCQVJbV2A7qcPmCqIKF 9ksrBVjWhd9AXP/hgid4KV0pE7FCgagCWIWmO4B8qJtOY7s6PZz80ZVuNlbxNoXRb54wSF9PjEZsSX2W mznczjTyBijjlEdCMTnGArnYg6EhMpjNJBszu7uGpmpYuXg0NRRCkYd1PX4fGnvf/3m/8sGehtBLY+ya eigQpzWKe3aePnkfR8igulduXegVgjcCoXwOdKBdPEei6q4+LWd9wnWEUUGCEfEnldg85FuzYSWkvz8q A+3GMqFeJ5MISPXC6oR05MtZ/PeR0ZHYGBC591mcVrrTaWldVAyRWYLuWMGyjpVJa4ry8DofYeKk9x1J f3bdsdb2+QbXTeMhWs5HVXzzImKEz33f3nS4gCzY7hcUboLtgYH2o1yd7oMlTCeAiZeJ0c3aw1rYQJiJ VhKJrfTm3tsuTjFNfRw7Nt+8u1YUWJcUcQAI5/Hpry+Erx6aa4xjG4yW/J2Hv+8oiZmY9/ExlTlAzoKU BWDq8FS0HbyvnSBW1hlYYnmhdorYgP1AdmgJJS35LhZ6zQWONQaTaLLIjPRVBc/Dx5hlxX33ijIfum+i NkmH8877lQRR4OzTlDukoVwISWHkZShTs5k0ohVAcv2D9vrRptvHr7M74RBnQ6ngIUSneEpoWq36t6nC Y40VmZGyQ6pHKvhAxb/7iudqF9VoinEh9eJ1OVtwCmgDQ0DDT4JmavbHvY2aMnDhDvVZkhEIm4+UwOeh u3lARPo9d1g0vYARGO7GQXyRf8VrEoBjiKJCvW/gYc7hzD941U7bA34w8fepeilfjClbBOkiTwHOCMYi /LHRRyeuQK240vW2bDoDnPhmcj8UZwxT3oACk08YRJ8DMeyRMtxxHS8f11y9G0fmDrDU6WET2Kj1QfEA kCG35MTMo+UqpLH5PDJv9afnEH1PYgyQAC7SEJsfPfYsgCkK4cxA5ka19rvul9cMw41ShroXU/OlQwPO BHE9+KUodDiNcmR8YurJv1tWyl0S+Xms/FpKRi0ehYHIYIji60+FPHNKtlEVLs4cAYhkm8t7zcNitWTQ aaEZYfV8aIrvRxHNe3zKfUSSGNBxZeE5X3vbo4ZXp8bCbSYa65SodG7mFpY5ZktQsphwiHLsvn/n8mcn PP0MyR35ilHIt06RvJzIr90t197gA2TZ/r20Zikv97R+QF5/Y9kg+xQvoKURyAkDjtB5OwTyCDIlKFV1 4EZUNFLVB+4i1FMxK+H6l/6u3TcSdI00mF/7kj07fcG35gZqvSnkAxDB3J0uF/PclWXhhCIP2kWv+80Q TzXLn3EaPde0XbOx4ugG7XfhJtlX6964+g9aHzAAo4VVePrjfm3kxU2gpGxgtuS5nuYM9LrdTIoJtFZk Vt8tl28ymeBhneFtGZlLtJBQ7jrXGB20kVQc2Yh9euBznWypdCJr5jdpgbzndHp0ytM4KW6lIWkykJnx Xld58PyC+PyQgZIsCfL0fib0yfwmevQfOhhGpoq3nlLJa67D4eQNgojkBCHCJqBu1P40q3u+w0MTSh8q XAzD46wPoSIkxcMcRxLge3cFOIpWHiZVbDtDEsrZtqnRvS62upJaA6o2PK1coF3gDz5N2RQos9+nLWEg 1vg1CMOyP8JfCqeTbep5Vck1ppNj7cogsJ0jPyGA2iZjBFZj6//4gO6XELGfYbg8b5ONS+4iKnmpztIp Rnw054z8JjuVBc01iufLxxwGrmBfPe4ucYNk0X6O8ROYd227iKyRZ5s7FdX6nAQh4eOAO7FlRiNijARM iUHLmICe/KI0E1MQvDa9kPIvpWDy2Fj8FySiiUUJH6rIFyAEXCXA76PZVJiZCKeK/s8to97QoU1qODL+ gRJTXelb7zrw+lz/k6BrSm3DhHUFpiyFRDFX8A6itcsBSjYJQv4X9yhtexJTLdZOm4W53FxDd3Dh6vSv QAcPwU2tO02RnCRZbKWkW0yCxE0KSH4LhIrvia/9NpbCWCGSK1YZtq/jBdMXRSRe5TRLPsj78A5k+UD2 Ygf+1VqehVKmBY2BDxfCGepRz1jO2of581n54APtapWA8L4WTGaOIKtJyPfcii+PeOJ79Ks8+wYmtu0N 0Uc4jHf7KT7QqO8b+d2QtsJmAQOnsjsi0zYVtCAdCaKoYOdXL5j3/P9lXMJ+JYA8nAhQ+J8D/5pxUhSa xaAnDnlo9kRfnqT7U/7UTGRfXnCDaTl/c1rmw2U5Mq+Dm0Qh9Xn0HPHx/QmMfj0q4sNQ3MEJmtzznaty lPmet80kzZ1MZwiUw9+IB8E7TQkIJrO47e6QL70yQDBbxFkAhS7QITPU3iLYvGgQyayTwg6SBub1goFX 7ixgxRcweeAF0vdIxy+ZsGRuIrDFqqYw5hZ2MsJhVWYXwY42sCoo5qKU4lysdU0IgiCFIiYByh/+u1J6 cN/8KSSbvIOv/AxGbBml80/i6CEpfW2x0Z+zKXwZy/mPsum2ML7apczGmxzuF/tTYA39tRClly7scWHy JVaXYYUaNWe+x6ANYeA7bIM+5QLltlPz5FIDLwOzWsLitIT7IraaeGfQ/KxXUOU8aaOMNiVWvFMaoWYa 8RZB0osWKDu1ZO47AKR1pGyo8daxlYIeS4C9kiVLPqHUAq2yo721S0Z16Mmj7st4zaMyEpyBBeb05bSb QTDmxDnasXQnqchhGerMhmE3rVCglafU1C1SkdXbB6g5frpLFVkVEfqWjQljV2RMP4m4bdV0ABKN4CkO ETKGxssY00JIXJ+ahnBKRqcjVTZRHlXQs3PqDTFPIHv0+nfQWAv4Fi0819lZkMjgAmmcALnbnTkJjjPr rhdGRGN5uQH+z3z1a2fX0tAbp7ojVskGjeQditUoqCLLolxfOi4U2S0W+ZnlE05K69g8ukeFaSksYaO7 lKDlOEmx+4oLjWpwKqjDxQLyqcN3nWCTOEKfU7rWuu5b3KcgnjW0QxKgB2rW2eyXkIro6EQ+jaREbO5y z0lIhy5pIp9GeXNAfuy+wt2oiP/b3AtLU1Qaq0P2fQXWbDpHFmz4YStRBRYaA0s+QucO8hPHp+5vB7hk qXhiVqgK8kidxGhCDWdhzKYJ+seDl/rHx4ICqKXHnviw/sRzQU4qBkhM2LLzhHVeSTvJ+gIb31AaJJ2t iH1Y3ffX27HekSkjsuNoIxAaFp6jcMtifrRNnkB8JzenK4Ble5E4BCP43gsJguPvsvQgV8XSFCm86vFn muVpSfwZni9cbX13DnSTBxZjpz4DC/YERwJx89V2NMMr41mF1JWE1PlViCr3m4OGWX3TOMsX8WFpwh1j vGx0TBDUko3Ao1KScj+5feaP5B3CA8PcFviJz+fXLAOb6Rxe8vPmezAo+t/Ts2AiLxI2lHNoN8VokLtY XSd3cjDgRnyPA0nq8czuD5GQ/Nty42kibCXVKDEVifXOx1YLGJGSLhaygS5FDyF5eW+B9cACLy7Vj/wQ os19qbjjY880Dyw0zcESqKh0D+ZWprZ5k2NFWbDAL6dFCViRiichZcBJc41rca2LQjdLh3WMmVmuoe4F fyXlAHdB0DlEEaDeh1Lsqk1OOGEt3IU7QnLH2WRY/uCcvLVC41otJB7+LpKHJeD+cccOfwfMroaleRqp 1xNlP12s2h06LFcBXjC4eOXowknJLridnac3sqqfpHKXmRxLUUcIH1CYgH/wKZI61uoA/nOWEal6Y4QS CUFGTJ5MXllIH/B6sGKCHI2xfviFdSaVvQ/XHcYA4SigUC31AHBB6IwXF+oVU1oaXRDFbY0RjoamxuUC XbsFUEWIDjMOg+FYSM4Oe+ALyWLF92BpQ75Y08a4s2gItnBNdupVpJvIXeqUOU7L3jtUvfmPj8DomAcI aCnlTEzJtHKpDg+mkalZGIdTDEZK7EwbPlqqoyqjE4gZ+mZIsfj9TNBwszHw9vZeMLw8uVe0uZo7NBUN lDFXxw7+2J/LpvjvQ7i/hAGZWbRudxYyFHZfsAjBUtKtXpbJ7ifHeymERmGM/6/O/Zwr2Z+nKcQNXWyF ZmrVq7AVRX2d3bg7yPtfDGQqBDt3EJacFjkW+EASo+ypiulY0v3LSUVfwgebdXz5fTxbZb+qSXF+DC4M ftNkBB/wf+KLTowejCUzNXLuHX7TMe91gYKKjqKdm1w0LW0tZO4zBhSgM18rPyGKPufoeRCVE5NurS5m UJ8wZY5LDY/sWs4uyv7CTSj1M6YF/BX8fGLYym1RQpLsFUlKxdwmi5rbtvKzVH2Ar21eJq3sEuJ/njnU HizGa1+3cEe53VQT372mdf4n3iGSCwlTGqCaAVA0maXjXBbF8wSui5uTykO9w3DgtLS5/zbgIym+NXYN O0ybbXaQrpDTZA7Go/8Vd8knDGmmARH/eXVj95VF1runbWxDMXHrCIRfGS5m6LQ/Hvd09mH2NOXY2YDH x5dGMITnelnL8wREe+qDWMJnbwYDBlGen4wQ+fp1gG+t9A5ySb7I46pP8AyQvI+HMSJTnwfxC76XhMcc Wd2w7x1kIpQqO9aeXdkqgcKGWa5KAFIuujCBZ/qfSIElj3hpLt77GZP1WT+kxyDKWM0cw2T4VqSMVJwS 7+KQbtSszTYBIMiO1SyNhyYW1AbCIn0OzewNU33ZwO5aQ1j1e0qEoIdbChvMSU17IgW0QWH6tD0BZGTM RBbhfXkh0LEfZ5+65kPZjPV/Cv3axx6KBWMyniH/846cOCK2s0WWPlnJe8J5JXxvuVUatwbn1WK5UAKc p+vo5jTwH1fcxKOttLFaRD/CVo36lZvVjkB0D5KZVEofc34nfIhBa4ez6cHsNCDi8/FcCzSkaHC9CY9E YcZHfKU2DLc1jeGmcPlJ0teiamb2f0To5ofg9UbGJ+DCvZ90tYWKAbxqEIpmQCEj9LjsizUhB/LzmDHu U8WQ75g0ClPP//V82FWyae1xkdOwkIewVq2wC3NiXncBWmGNH0hb7OFgH4D/WM+ME+4KorOT98xw9cPi oNO33yU13r6dRurUYLrS8xdM803FvQELEUg5RVQHO6Us6+vHmq5AHM17kvJDmyE7ZopGAzxCabiEFKDY 5Nsd+mZmGCYk+X3twpzTrBWAlvUh+jX4Cko19iziUNhRaEPzy6ADy1x84D/Dp5q/4SqAEJu0rj2thauX dM3gFmtlcBbm41yT/gPnCZ+TqRcbQroYZd5LlPfaYyhD78mtm9dymqb5QM2Y5NZrdwAo7+xEA6+lMJXU vuLIjj5CwNo59YKLDtedujaP9hkWWCHgC6SM63KXQEHRZzlq5PcShPAxX+Bv9IatQzOOLwSCIALFN55u eMHWpjpUtSSFlvaObA+Tigjy9AjtnLPxgfS10lvKeEHImBMpvUeniEy68wY2SKB93yrEaeryK6pHwEnQ CvJ+YtJV8OqAQytJ6SZsVqWnz86tN+VTzVG/g0EQ3v8aW92KPZgA8QaLcKBeKaRbaJD8kl3bA19OqPpb tb+mO7Zfet05trcuX+6cz81bdKXuvSq9Xjw1FQwIDTb+BvKtko/Py6re3FfkJE0PGoUky/T/gAidglYx ItHOjjBgyZjHoFzGXAFALuSdHUoY3fzcnDOZR6OoUW+9R4HXXR8PZKFoyf2EwtPx7yz4qbvai+efOHOH 3FauwvRnsyjzeqWmwSJGBHPi7U1cbfF3ds45BnlCbEjpiHpQlElf9SsS725XhxKN00hxb+DjruZfEEEv 0eUOz+skbLh1ufIawKudYwwDuCDtXYzX5jcB3qfhF+mWKwguVgi/XJGzhfPIU0fvsvsG9Bua4pHeeF3p R9r6wI7c1E6aOgFvt07Lf72RjKkh1u5RJn7GUNdWlzzueK0qYmErcIoSn676KslMLaXEKHihilMHPYao lzx/7RTAqUnMQbjL01h81ipU33/RO1n5fQbPuPFsgBkRwcd60TTBt80uIX5aJZv1NgkWCo/3j2c64Vmu kPUWvs0G5MMfxZxHng0phZ4bF2QjecPcNQA1gITyh3g6uS4eSSnoyYT7nEpNWd07JsB34imw+sM088cQ 0g8TqFc9fhd8pXzmWTbh6tOCU9na9Wc6cRYvvAm8XXCJhaB0b8dL1bp7qAXIHcWfX/zahAGajTL3dQQi 4P+tZ+CxAEMlRaP79/ii8Uksp0m2+CHkeol6ssWiW8BXm4TCzPOOq6rs+ty5dm7PtDt0KnqizsVQcTR3 1g+EhwT58jU/BrPbQpMJmIZG5KFox3cp60XeA90XIbsbIO0Ww1ZADxLfVYRcIdo8hTIkmKjpJuXoAs/R +FDN0a7ZeKtQL+i6Of4VFLGXFmBt/by2eVQWz3BBaPPDNoI8bVD/s81jePxdD3c3UyiwNPk36SP7/sQd BGjeOjszgMC/OTi4OrA+1keTwf1YML5usbs+yeCE2US4o3OyOJN/qT8JvDR8Nu4W7ov8MW5RQZNOoK9H 4K/1Y76MeKP1/Ntr6Wo6/99RCzT0bD6hou8zDVkfuOq/RLBMoBkEmnrVIQ5CrxWX9N2XrkiqKqFN4FYU BnOacjVlfn8SESty7e8+Ns7d0oX5jyvubq6D+wC2o7bZQgNqKTWfpDBZCf+RbqhKNAxHbQC9A1M50Ar7 BsIC0z3HmOmkBQMB8fHspkFb17tWLNufbiEa9vvIbzrKYlzAvjzmZyyAKpCaK42V/JKmMThOsDNhIrSj powK8K06Cirv7GWmf9ku4AZU/zWVnwLnbuIEynWS2DsKuj4RrEulAAjwBAiuMoVF82e7XuYcZ4o3Gj+G 6l5bZ/s0CBNEWkFxlI9DI/Pxkv23g4n0PAUacBHMgipfW7z4L4hswsT7JipLEbbCDg0YQGNYnLNtStCS 8l/aFRHL1zwPmNEBBVF//Eve3N9gc6tYHh0ADMq6nfODCrDYBc3twwSbqz4MqlvhAXBVN4jtDpadXm/8 t1mzGsjqF5vwHfGLNGmzjET+LFyfsC5LGC5Qcod+6dHB00+Jr39SgZXJklCM9vXuBHuzAYFw62QDDNd5 PO6a2pqddYFcXwJ5U5VEnGF/VsJD1mKruiTe0AIWC4rArFohzf0UCs6QTOQPAb9jC+DBOFFhbSHIeoKO 7idDjClD7FXNNcwkkWF23GCMlnC4vBTJ2aprs65k4fs46E/ay49BKKY1JDlHOBLBbOsXsi+mgiF41rGq Z4JrmDa8oWn4U5UADztBKIz5MW00/sVvAtLZqixoV/SZSwwYtY7++szg5RNb385laTTgyod0CTJjwC5b L15kNrzu84I7aQ5ACC6/cyt9zJy9cMtDfZ3rN/B5ogym8dhr0SrAyQS5TluDDacXx0Kf1lJuslz7wGKJ rAS8OGxi+BJJS5hBtvFJEfE9KnFEf5t9nqNchmJeCW+D4GZaqCdQDn55KtN7gyWk8vM6lAxU/hr+aOtt AJlBoSkL/y13rbVxKgN1suenJSbHpipBV5dcbpVHREu6i5mernsIYPX5+8oZw3sAyDVkAPkN8aMMQKQr XbB8eT7yvS/mvlgkj5vzPJwtpTcEcS2OSuF6PNLIG1Rn+ZofA9d396deqkzQIsE1CY1tmYiqM2e9GoDT 0lD4kbpQh4Im2lqlgjs2JdEYSXUtKoqrsug6hrw0mnLVsq3hkoEOP1ThKTI45APT0ijVtM9JWDQ32Q10 fiN+gfMHXhR8i1Kt9+eubMozXkGjLpAwsaLqlWfTXiHpI1/2rIifiEFhWuCKscdZpesgkA7m8Du8eF2b WMCxafakWFecGwqW2xO6aGIpn54CBEQXOxrCTqV2RBdSapU5OZK6rm+Umk+HLNxkP71ksXjX+XrLrpMr tUHsJQf4RWrWQdn2aidFDYhWe8S+2lfjeKZNF2RPlpV5x4ZBfjjt2nc1sTAGapt6epPoIYLM4R47ux64 ajSg6kv4gXAranoDTNFakyKx69egLq0u05n0WXl1f5LumVQlgLHrHEhRbERVD89I8eadpZt6gwSPuDsP EL7Ymtrx83y9TMzdcgUyXWePNreaCkoYNUQzzWF/DdqA1UnTDlhz0htBV/2LmouIHuiKmN7664UJuBzP uindnuhYQkuU3JZ0DL6RtbrZwqVS7Tq+j+lqzLjeEH22YXZs9TO53ez7DFZ9yHt1dyRqnlH/YBp0YXYt Fl7Bll5Zv/9JJe7QukATxHIgPTqpUilG/ndT9RcgynFt2tPfqRQ59Ur546NB8eXZSZE5I17Ou6tEfUwm O2gXmTCHXvHjMaJdtSfW9sGADpYNeIeJNaloMYhz90wIkQwBgqHLTkLFs+PNufKVGaK59sBvy/bSqGjS t/i4RIA7jOirdjGNhoSRetFc1a7BMFnEHODmNasIjVaugp2rM8nzYel4LgxXRxofOOrKPTmCBghaFhJ7 zk+h3RCXawzxl6e5YO5jYOBxdxVZ4RnH0lXELONKLVP2WXIu4lqQP575/FZX+NIJxiLNddOGz1gOy34k u/fBhXU2sWGLOKhA0lxLmu9RbuDE2CR+qUp3g1E9x8FRHP6+OBh9jRS3B/BAyTFitwYqiJX+oM0k7Xfy JeXvcLGCevK9ca5SZq4yUq2hNLsGcESLk8g1PcI1cTccPfs3kQVTmJd4tcIRsaiE9rhugPNO5Fcd4YqQ 6sbrL95L26ZxtYQkqbdO3yuQJsONAPfLf4uE5QNy9z+QqMhsWQHnIntgubqZXbcTtK83QCM2cYgrmiaj TeOavNiETz51d3A7XKdzLqkZjWwHP2TaNezoYz3rWY9gV+MOROBVRYDw29rotCE4XN7AHpw58V2bi0iR CZnx3CzYzKN2r7ochxtjj1iyNiwxXEdj/8iEdn6+ltBC8IOicJ4QS1MIPSd+CuBvtMJlFe0MZpo0qti5 uZHWD9vprQiKViQgVnsyVGtEXEitSzHfT+pghrABGfrWQsxQZ1fKdAkGZ+a/RRduqUGoyZ46UMOR90nz j+1d8MyZVjmCUL8pz5rLXpdLP5nLHoaYa5VMBChs1LE3B+MZRQ0MinUC4DatGL5wPQaaiwExBk+R8WKV 7qcowQ3jHoUCZXNyecvGbFf4ml+MWgllqIeFBV2A/UGASR8bq0HrBhrCEq67jlgZ1eUotrbkRTKy1cPY AtVMFaVdvgVQrDHIIIS6Xt/5tFsyqUc3Mn/S2b1ebX7hkiGVHkOpkdjecctAZfdhsdodJ7uduShBdG5l ghG5+GytCzZ5hTnD1UMOV8Ai8Y0Cy7MX3FdUIRfppnEo/EV/9xXnwZuVTV3Sltr6YnNOHPzz/uyGp5kx fq7MfowullWGsdlXHjbmVeLUst6t1Z8GheDWH1bYtC8zW+wxcjQN2tp5KwjsPfDKFkiEs6So4GH3sKPj Oys55cNablI6zC6aAvBZNWd/kcBIXepWxY/BUN9MQAIVpxVhf/Tr82WebcXlcaYjFz2IHG7+KHvbDBNf rJmBkeAYregNaYS9Xl2P8aXMd1x2VZKXYLftquhMLkNagSqH2pGuPYhwkI+GFow5t/u/Azn9wBbM2s7s PePMJOIkVEllNPuGucdn54HcUTwMF0AwIhLx6KIk9nAtlhk09wr72AVVPcYhscTQvfHoibWaHM+ut4cT 0za4jfG1iCyZ0epsO/EUt6dxsDHhI7ue8fCMNQSruC71t2ImWd55wXPYIF+ZbzV09g0MWpZXS1x1IneL E4aYApKjh2fDhxm2rdJs7lYRhl4UGKq3kX4jRct+6zHUBFVpGKaVIjz1SWGXyLfjywXXYQWDgzPd6I9d GtO8inaFv7UzsDuhgNR/EMnIGWNhVcVYUqglb2ZuInYM4Pk4zy9of5UEuav4jNYYi5HlJJovzICJ07EG BD/ivZeEW4ZV7yjbVrHQ2Urpspcfs2peR+sHnotEkB1hCQYOHjZAQRtkWcHj078CDw9VjCG3yIqktJwt vsOyURRHakT7Fw92RP7TZsRdsVBRw6diJypjZr3KsnGUUfZxrFAjC6ZdRvc8eT8TH28EYJTdAs5hscoW KkGQ4GblHVsuVPGCmY0K6SwFwX06m2SL7N7SKz46N1F1abO3hQWG2ZPAmXZ13LZQglLyovUF5y08pyzj 3c49TJf8FeAxZUIacZ3zevAwtY/rvQZJ9npvskHZvVOpD23S/5TArBnH72NzSFRwhEzNR8oCkC+7yCQJ N6WOz2nvNypeX9AjYxWl8nkjuL5+ckU0KGk2xr6PJlc3fnDOR+4OZMmm5fBG4baskTURD5Mz/ECfl9KQ zEzDcl97wVMNyFyAjPB6vyc3ZE5mtmUpnmUwZy00gLckcVmFAJys1jTPx6ax2UDWGKDLQSKB/NkZjhQS gLLuJ+WAGaIY9XrL7ArigrPVRIvccqwvKHF9U4I9pHr0ZAySkPJbO4lWdGak0oKRGPAls1fLmp/8DUjn RLu1d9NO1iOADAu9DGqSg7uAT5CbX64i60yUydceC6K+ggQqY1FwiurzCxzNCF+SRxQ4iQisg0yOwGbE gYK3YL1FuryjZfj9RJVR3k9p6OKyufy7ItBrOcC1pqYV388+mx5Fqzz4PCf+nQ1Crd2orJMi2jzyKQP/ wTQnKxeISs2CD0KTue9QCwlsbSz1kV6XTf/wIjkTKuD5aNrgUP8GdoZzaunNSgoalg25RF9kyyaoWGZl 1IMyEONkSB1CzQV6yfiZUi/t4Q8BwkopykB+JhCHtrQPJ3ImMoMD8NydYReIQNOx+NRO/1K/2KiSJpAS SpdgGrPuNhmEqaxoTuzmDK6IGo+E4L7CI4YAP192ZM2d2cbpylmuev630FnHKRNG+HJuUoEpd+Z97dGB QrPo4xtFRQlNb+Z6Hb0IqnJbZNqWKbcBK519yoRAOPQCeIzs8dVfV2uoXu2542oq04Bd5Xcq4EwIbnmU HoksFY4KBgoDXHXgt6TYHybw57piDyfBROu8oXy/w3sfKnT4Dw2wcsXWFRWf2QCVXS+x73ezpIp+1/6P QRYSOU90c8PTT0s34SwAKm3+EFQsqOORN9hwT57wouIpJuSh0JgEdx1UiT3j9YyVXMZRf9naEe4/NuFt WlTkzDckjNAlkkNOZl1ap4EiGhBP62taLnTk932xrutoS8XGLZdnjeIhAgBSCTKaht+5kVbkBySqIdCp yEb6HAx6JAKsq+aVCwkrWZMe0zv3l3KbjEmko6RQbaFajHS6KseNCbFiSgrmLta8+uipn39IvfLKqFVG JBt1e1tmCOy1XZSzoLdSD0Um6JQuOaT99vSNuVGSpx5Cl11hokGoxVYGhyRI7Bl/hslmPCIzCh7cf2Lz nKBIG18nrnQ5HiANL9QrMsxTv+ZXixmXDhPm2XdHDRyc+lx4bDGqy0mNzQGpyfwFVVpE+gZk6AEqzMs+ xd9QZXiG639xBVhgkkP9+dtUOdZrgqs2dKegljxuITofXucY3a64Io23LAfPnFmmlpdiGW9Fsfye1qVP g4A9Pl/BOmRTC/MHqtH391ptDLjAmxxefUf7X+AkxF7q2uSiEDqgzRhKm4jF/t5Ph50kJlqP0pR7B8PL hczo9CB6YGgoBUSxQv1BPH2YpXaBm3hLCJiUyEPQmdQnvKKhAZtzPqKys3c/BifrEAMCYI1wiG/TBGbu 23JYn5OCDn9qByTsl6MHbdr0970x+zzTRQ+8S+jc440kdsgOqP16pHrDGwXG+ksCDzOdTYfiNG1937Do m4QYvhPyNm/UY1kiAgy17hLYAvl+4o/9AAhK4aHD4j7ZFBDTpYdh9/gbD+Ftfv3WZ/r6+3yFz1AvyaWR rnyPP2OiWTbroBmwNAa2iMJYBg81giTkYmsSMXEbQXt5yVkkeOyOkF11VuZKv96UNEQD6ABY3qAsS+4P 1954J1Crb+/BrfO6A/mjbr91nx/lP+RKEPX/o1MwbLf133JarNlmOcRkJ2hrn3xHct02Di2eCee3vKRI c4GS4eyRvhZunDyfa5i+7aC//Xsaw9peXYrpMDUIVs9xVgCeKjAGXbFFDuVinY5x7mMUYcUT0S/MBLi2 nz0bseJejkCgOne3i4hqLfjyUqKQWWUi0d6D8+72qj6GR2ATlBesJE/ZHEEA+4oPfjYU+RI8eALynSJg Ig3CKSv+7oGop3HhjQkBNwt0ln0Iotg/g8GJAH7HyI6M/uf2/TvtcPAN61LaxpDmx7Pd93cvhH+wk6So 6QhDpmSs0wSoLpAkPHsCs7BXjEB+2dchm5aA53Ff8kKBP2/v+IqpqNc3j4VjJii/Xowgtcjo0Og5HGYx 4pzTyuDTJUtiXlClFvxK4rQ+Vbg68jBOGlocWaM/UQA9w516EzCRI58BKArbcgp1uig4yqAaJFNoybDd ChduGe31Va4BtAfCOOeyQSDfma6Q0XcwsYAz9PjazmJUADNAQKtcRLKayk2qK0VBsu1Q3Alm4BnUJrwj jH4YPALmMtbYe4hgEP4/zeVGJp1idJ3oGtGDiSZJXoVhfbunsWY3a3oqsfp/VTVxpwgnbPxBL73DE9CZ BM46hMNrp34YZc75x1RNtAvVfcnQ8J711zU9A7ryKT2a5saCA9jO9YLxKFarKZttp0e5bl5GAExHY23I ilJRpXyn/UzPkFH+e3dq8w6b8IOWEmy2ZsNWfiroOYde0Q7hZN6vT9rZvFgvsN3GKrfiTWVNNLwtaqZV QPy/Q6gYfxaOFMn7o/1C+Uz2wNOTCH32iLp03aWjiqImsztKYrZpWkmhk8cN1q9kSaVS/LrvVj4tbo7H IaZHbtHg6IQEWgpwR8lzszPjHQxpqAm69MvthlyMHTnmlOAhBjMSuTUEV9oKA9fYNo+O5ivRyw/xwBED hvWcTEA6fMQvHmTIKgBrsKRKndB4Z6T/SSJarsMjyt/rIP2PFxn1NbKHLOUvx6oaRRjAs8tb0aw4x4/z OOxcyiiaSQ/WGA1x2uNiE+JiWHJqdBCUTNB9YPM7rYN8SsdD5R1v4Zis2wc7CGO3NjvoV+zx3RqZvKR0 DbdUgFf7Tay3LRphZzpTzP1toUTVAaKAACn2DPfovvASARBxAE3Wgv8KAqmjgUDZ1lS9sZDc5hV/MXWa Mk7mp4OEStSK48X+R4HgFyFVqzUlPl6NnfE64udzIvXEd5O55pKBCyrjmE6zjMc1cza9AFkIcXsY7zDm z297xbWpPJrMZPpj7Dz+O8Fb+hkRLrP1hI4nybLh7ROcC0pAqG0YiZuYP/xV9FD/4wiq9CR5FNYxAYW9 mSTLPxkion1Wv8GokWDHltki9KDjx6Gmt5nvfkX2dP7YeLMQWLZN1zwQ6lwXTO24fEZTdr2EdlAhYZqy QvCym/m45iCKeTSrk9si+USDXDVL+aFAzgNiWw0tsxMc8kJ1Fl0PUK4Aar+0XL5OFjm8lZC49jhgkR2p qPdxeQYWSpiXNKwAbX/VveGTuRqzJ5in/KoFAHfR9sIPHaKImIs5X+3tZb83stbjIOEgapmZshkasC62 Ti4YggvZaO6eOh5La573g3PiGOuu+8hbEa/OIwgFaZnD772XN+TxABkZDSHHsjvhT+A3irpWYt4q3cPI NRIjY0GLicHBj7PXIEHLcccFwlV/x5LEYD4ggNUdE/Jc+E15sAQcanqMB+I59pgUQfXXHJc2amQR5EBC Peq/5lAE8JUikKjer7F9zUSfUCrcN3sWMUs3I8vwGtJ7QvDq4iV0mqL9+SF1xCY9gSmNlsAQEiLJksoq x2pRP1nE5r87Pe2EdA/qDzLnetyCCMaCsQWK2UBb6zL86zX+g3gab08WRT4T7a3JI6E9Sw+N9Ao9mKPZ sDHOzCsEbPKlYOz4E/wyF5+v4V5li+WdoWiYpj/Kyd/OyjpfWHSnSdONSBmPwjyUXixPQjt8tuOGmCa6 acSIGJpDbkpNn6MEQNc+IV7tdPeQwXYaYS6wtcT00eYFg+CPLoA6/z2d4zwAhRNj77M9oiS17i7Jb6YE 262M+rD+id3MnCA/xeMnjngGDON+So98PXk2NwlbDp8CisBul3cY6Mwptr3t/rG4NVLh6+JbW7sc+ju7 dANe5FbxFMtXPm9+hJoN3o/MqHrOG0lYUYSZ1rmYfA0oZCoEE585V5hpVqAYEZ+LtnR7CorpeeA5qL4I 9OHfUOvvFlJgetwamLNSBdN0jXnJ/kIRRuMDegufFpzFiCvkEEJUsGdQM3J3Fzbm7PA9ppTRc2Zyqu+P XxCEpvx7H0Ehe6X5MrLwSAPcyO0/KKPs6Vkhb5WZW/IH6jaN/ksbTIH3UNT6JCUwdslsWeKwAxxujrGN mkB1Tu6OATcTMsx7IKAyPldv9XyC3NlWNOaOoCL6lZn2mhC3NCrrb6k/DlpWiD6DKyCHVMTzETzAhoxo OPtMfL83aQ7+5o52txHVRpOUWW/ozg6mIBJWXParYJ0jPwXOiCRztseanPJXGWvnGI5vQhlWTtDRR0Ec HBTpoKaBDG2jq9J/D6lJbs5nZV/AFfmXtpJejUUaxvxWWDHQT9ytuAjDpYcYKbp4w+UJ3sReU6UGcw6l VrNeqeZqDt4LEoR92rCfuOKyspfFTUlHrWB8Gzs6/m2T7voJD6X88SbyaMBkHnYzETxcPrAdktrYc6Yv Awl5QPTKod//472WCp6F9g9jknMyHseO4cJs/uOhDNYKTwIiWqYXieXcPyTGeQZemrU+w6QBL/UF9pcI UaO1WxSZebeQgY60jeE/WHJARYtyTPBrho87HducKqjhxPEV6hMAyH6PE34n27IOcmcuureLQ/vs0OHV maizELStGGloAAsQK0eYZyrFvzjNcGdT8mDLkv8qmWRHwdnvRI6S+vZr/xz1mQqrldMhCPNduEHNPvIu 7+qEnn/1WZHEX+po8VVMDWL4IJSnE1TL+Yiqtp87RqQBXJAfWhoMTX0rLa9me2opdwGjqcKxN1z1eEa7 zO+jX0krV+PtUCuNVVKHR5RopA72NmIfIpxUzBov/VxpIu6ddKj+tJ4d2eLWc4iazUKA9Zm9nycDhOpa bvcTzJs+4G+yZ1+jq9bHbWo3W0NbTLLje9ut2sAMHquptgcMESUSpcXoiTFPQ0pXYNafP4SCU0e5RCfr Z3pwJlu/PcA6mlw5rV06sxXM1ZKV9hHSXWc/H5uwPBA6O6P5nnjd9uq6RKc1vvpZELd9GEqHYJqCAruz ndu1IvPfXTd/uinPTwMZda7khCb29HcDQgn6QyRP4vCp8jH/lPUM0SGwwVGDtRBpfe/DSYjH4dASVDue VludgBcin3VBPd55fQ0/KcmTz/DsFgFTSdVMHeXhW+8vocdwYcepqswd7KJfmuj7+O4B59Oj+ys6K4O6 s41lzDDtWrqCLK4Gs1Hsq6uM/c6qh88nJ2jX2Q/EdaoXxQNGMeJZXyfp/Z4w76SGZlsLCwW60v+KDooH faGwurbFmxgEseoJHYfyywQmrFgVpPdD476g2WMfvKU/YX6Db+qblUVawt+6B8VOSARSqPozHXZZkCFM DUMK68BOGin4GEU72l4ALQzHCfXccEwS6PxPu2afV9kj2/tf6MrLLe3WcpIcOpgIAAD5AgAADgAAABoD AABqfrsUbxtBK5EbaYBdk+kQi1n5drS1UBv02vIKIxBSByz5enqjAUN7GoGrrMpHTo4SwZRHVzIyzWFX EndQ79365W5wKS48j5X51mQY2pcgxJWgEm8DrvPbQYC2cgHCW5Xg5cGYE9sPcjiwnfyQ/Bm/NlH+D5JE UPM/+goh/+RHTLnX6QASSF79q7yMfomheio5Mq2DeVJzgQ7ZKhT9JBuxngXL1AStDncD99ttCXr63VMZ 2Yt3hOqIsFQxlcMfoRknKcdwH6/GxRNiM6YTkcJQLsX5x0JS/5Cc69uoBU67J1dI+45/HAxM+akp+/sT 0InnxqW5bVkjf+mxVSxGALrIoLSoTDIzT0NcVErgZ6IrWxAzUMxK1D9wWQJKX7ciSs1H2PHhs52A9QU4 85WSkxjV3niYXKsDFLM64AiRYPiY7DXMV6ILNrJkilULfb6LDJHUUXG/uEiWxYZSdnrW8mtPIjMuUyQg n7Clm+MXRRGpIouDIOGtxCDNACK8SLgdtFxAg/zJMTD079TeCd02cY6D1XPNaiaENjiMidF//uF55Rj/ 1EFQMrSqmuevSrw68lLwXokdjsK9Bhx/HzIzalHM1Ibka0De99+N8E56c+adgOZPCe77q/IeVxjBOK0m 0xbiaWSwp3dMvcP65XLCjrbi87vfaFEqZMR5KJXzlYUAsk5gEdkEhiS/cWsTagZGcBxDec+ZsfPv8fcP bd4UZldNkCdPomvM0+TmuCb1QETyJ/hTFXzcTrjZandFiGVCD2JOep4Izk6sKLBaCZe/goSPI4t+eYv8 R1Y5jkYvls3elIhJTZprXX1yHk3gA0BQRlki47mCgOcaz/f2KcTeclJKtkPrn2/nZWdAm1gAvSVNYQGm jvXsVFrlOFcMbcrG3kyBWSqYW1gHzOIIX2CWDxLWGNZx11kl2ZxV6W0Gqil/M0/gLg67j8hA/nRtNgeJ k7nsfz6tMoWYxWXpCeUpG53Sx04XG07Rq0/rIDMPNJnAJIV5+4KgeAUAAAoBAAAOAAAAGgMAAG0+nQmj fK49f+rt9nxIFV1jfNeU8XgkdvLP7/7C1jQsIDpgSTD2z0C7LsON2Yh0ZOU0i1GQYdSNed1QUwQInBGs MNDr4YkHahrXJXt8ItXi70f/guk23md7p7Dc7lZboPvDJgo0GhlIzYc3S/RQYOb57upcwbVoYxsmMQpB mn89ztEScmYLWyL4zk4W2nX0i3CPbWTr4PmC6bspjGg2/xyhKrUhqQg/K3J7xPnjmZIPOBkXC/YcM6Pu sxAZnnXMur1D1MhCIbkIVFwR7TAOCAbuxd4N/Vb7zWIKlFKs+fOklnogSXKsGTfooX3qZ0RY7KZmKjiZ +YQmOUOaV8JYyzGk9RZzsAAAAAAAAAAAAAEAABw8AABQUujtCwAAVVNRUkgB/lZBgPgOD4VnCgAAVUiJ 5USLCUmJ0EiJ8kiNdwJWigf/yojBJAfA6QNIx8MA/f//SNPjiMFIjZxciPH//0iD48BqAEg53HX5U0iN ewiKTv//yohHAojIwOkEiE8BJA+IB0iNT/xQQVdIjUcERTH/QVZBvgEAAABBVUUx7UFUVVNIiUwk8EiJ RCTYuAEAAABIiXQk+EyJRCToicNEiUwk5A+2TwLT44nZSItcJDj/yYlMJNQPtk8B0+BIi0wk8P/IiUQk 0A+2B8cBAAAAAMdEJMgAAAAAx0QkxAEAAADHRCTAAQAAAMdEJLwBAAAAxwMAAAAAiUQkzA+2TwEBwbgA AwAA0+AxyY24NgcAAEE5/3MTSItcJNiJyP/BOflmxwRDAATr60iLfCT4idBFMdJBg8v/MdJJifxJAcRM OecPhO8IAAAPtgdBweII/8JI/8dBCcKD+gR+40Q7fCTkD4PaCAAAi0Qk1EhjXCTISItUJNhEIfiJRCS4 SGNsJLhIidhIweAESAHoQYH7////AEyNDEJ3Gkw55w+ElggAAA+2B0HB4ghBweMISP/HQQnCQQ+3EUSJ 2MHoCw+3yg+vwUE5wg+DxQEAAEGJw7gACAAASItcJNgpyA+2TCTMvgEAAADB+AWNBAJBD7bVZkGJAYtE JNBEIfjT4LkIAAAAK0wkzNP6AdBpwAADAACDfCTIBonATI2MQ2wOAAAPjrgAAABIi1Qk6ESJ+EQp8A+2 LAIB7Uhj1onrgeMAAQAAQYH7////AEhjw0mNBEFMjQRQdxpMOecPhNsHAAAPtgdBweIIQcHjCEj/x0EJ wkEPt5AAAgAARInYwegLD7fKD6/BQTnCcyBBicO4AAgAAAH2KcjB+AWF240EAmZBiYAAAgAAdCHrLUEp w0EpwonQZsHoBY10NgFmKcKF22ZBiZAAAgAAdA6B/v8AAAAPjmH////reIH+/wAAAH9wSGPGQYH7//// AE2NBEF3Gkw55w+EQwcAAA+2B0HB4ghBweMISP/HQQnCQQ+3EESJ2MHoCw+3yg+vwUE5wnMYQYnDuAAI AAAB9inIwfgFjQQCZkGJAOuhQSnDQSnCidBmwegFjXQ2AWYpwmZBiRDriEiLTCToRIn4Qf/HQYn1QIg0 AYN8JMgDfw3HRCTIAAAAAOmmBgAAi1QkyItEJMiD6gOD6AaDfCTICQ9P0IlUJMjphwYAAEEpw0EpwonQ ZsHoBWYpwkiLRCTYQYH7////AGZBiRFIjTRYdxpMOecPhHkGAAAPtgdBweIIQcHjCEj/x0EJwg+3loAB AABEidjB6AsPt8oPr8FBOcJzTkGJw7gACAAATItMJNgpyItMJMREiXQkxMH4BY0EAotUJMCJTCTAZomG gAEAADHAg3wkyAaJVCS8D5/ASYHBZAYAAI0EQIlEJMjpVAIAAEEpw0EpwonQZsHoBWYpwkGB+////wBm iZaAAQAAdxpMOecPhNoFAAAPtgdBweIIQcHjCEj/x0EJwg+3lpgBAABEidjB6AsPt8oPr8FBOcIPg9AA AABBuAAIAABBicNIweMFRInAKcjB+AWNBAJmiYaYAQAASItEJNhIAdhBgfv///8ASI00aHcaTDnnD4Rw BQAAD7YHQcHiCEHB4whI/8dBCcIPt5bgAQAARInYwegLD7fKD6/BQTnCc09BKchBicNBwfgFRYX/Qo0E AmaJhuABAAAPhCkFAAAxwIN8JMgGSItcJOgPn8CNRAAJiUQkyESJ+EQp8EQPtiwDRIn4Qf/HRIgsA+nY BAAAQSnDQSnCidBmwegFZinCZomW4AEAAOkRAQAAQSnDQSnCidBmwegFZinCQYH7////AGaJlpgBAAB3 Gkw55w+EtQQAAA+2B0HB4ghBweMISP/HQQnCD7eWsAEAAESJ2MHoCw+3yg+vwUE5wnMgQYnDuAAIAAAp yMH4BY0EAmaJhrABAACLRCTE6ZgAAABBKcNBKcKJ0GbB6AVmKcJBgfv///8AZomWsAEAAHcaTDnnD4RE BAAAD7YHQcHiCEHB4whI/8dBCcIPt5bIAQAARInYwegLD7fKD6/BQTnCcx1BicO4AAgAACnIwfgFjQQC ZomGyAEAAItEJMDrIkEpw0EpwonQZsHoBWYpwotEJLxmiZbIAQAAi1QkwIlUJLyLTCTEiUwkwESJdCTE QYnGMcCDfCTIBkyLTCTYD5/ASYHBaAoAAI1EQAiJRCTIQYH7////AHcaTDnnD4ScAwAAD7YHQcHiCEHB 4whI/8dBCcJBD7cRRInYwegLD7fKD6/BQTnCcydBicO4AAgAAEUx7SnIwfgFjQQCZkGJAUhjRCS4SMHg BE2NRAEE63hBKcNBKcKJ0GbB6AVmKcJBgfv///8AZkGJEXcaTDnnD4QqAwAAD7YHQcHiCEHB4whI/8dB CcJBD7dRAkSJ2MHoCw+3yg+vwUE5wnM0QYnDuAAIAABBvQgAAAApyMH4BY0EAmZBiUECSGNEJLhIweAE TY2EAQQBAABBuQMAAADrJ0Epw0EpwonQZsHoBU2NgQQCAABBvRAAAABmKcJmQYlRAkG5CAAAAESJy70B AAAASGPFQYH7////AEmNNEB3Gkw55w+EhwIAAA+2B0HB4ghBweMISP/HQQnCD7cORInYwegLD7fRD6/C QTnCcxdBicO4AAgAAAHtKdDB+AWNBAFmiQbrFkEpw0EpwonIZsHoBY1sLQFmKcFmiQ7/y3WRuAEAAABE icnT4CnFRAHtg3wkyAMPj8IBAACDRCTIB7gDAAAAg/0ED0zFSItcJNhBuAEAAABImEjB4AdMjYwDYAMA ALsGAAAASWPAQYH7////AEmNNEF3Gkw55w+E0AEAAA+2B0HB4ghBweMISP/HQQnCD7cWRInYwegLD7fK D6/BQTnCcxhBicO4AAgAAEUBwCnIwfgFjQQCZokG6xdBKcNBKcKJ0GbB6AVHjUQAAWYpwmaJFv/LdY9B g+hAQYP4A0WJxg+ODQEAAEGD5gFEicDR+EGDzgJBg/gNjXD/fyOJ8UiLXCTYSWPAQdPmSAHARInySI0U U0gpwkyNil4FAADrUY1w+0GB+////wB3Gkw55w+EGQEAAA+2B0HB4ghBweMISP/HQQnCQdHrRQH2RTna cgdFKdpBg84B/851x0yLTCTYQcHmBL4EAAAASYHBRAYAAEG9AQAAALsBAAAASGPDQYH7////AE2NBEF3 Gkw55w+EuQAAAA+2B0HB4ghBweMISP/HQQnCQQ+3EESJ2MHoCw+3yg+vwUE5wnMYQYnDuAAIAAAB2ynI wfgFjQQCZkGJAOsaQSnDQSnCidBmwegFjVwbAUUJ7mYpwmZBiRBFAe3/znWIQf/GdECDxQJFOf53TUiL VCToRIn4RCnwRA+2LAJEifhB/8f/zUSILAIPlcIxwEQ7fCTkD5LAhcJ100Q7fCTkD4JF9///QYH7//// AHcWTDnnuAEAAAB0I+sHuAEAAADrGkj/x4n4K0Qk+EiLTCTwSItcJDiJAUSJOzHAW11BXEFdQV5BX0iL dfhIi30Qi0sESAHOixNIAdfJ6wJXXllIifBIKchaSCnXWYk5W13DaB4AAABa6MUAAABQUk9UX0VYRUN8 UFJPVF9XUklURSBmYWlsZWQuCgAKACRJbmZvOiBUaGlzIGZpbGUgaXMgcGFja2VkIHdpdGggdGhlIFVQ WCBleGVjdXRhYmxlIHBhY2tlciBodHRwOi8vdXB4LnNmLm5ldCAkCgAkSWQ6IFVQWCA0LjAxIENvcHly aWdodCAoQykgMTk5Ni0yMDIyIHRoZSBVUFggVGVhbS4gQWxsIFJpZ2h0cyBSZXNlcnZlZC4gJAoAkJCQ ag5aV17rAV5qAl9qAVgPBWp/X2o8WA8FXyn2agJYDwWFwHjcUEiNtw8AAACtg+D+QYnGVluLFkiNjfX/ //9EizlMKflFKfdJAc5fUlBXUU0pyUGDyP9qIkFaUl5qA1op/2oJWA8FSIlEJBBQWlNerVBIieFJidWt UK1BkEiJ917/1VlIi3QkGEiLfCQQagVaagpYDwVB/+Vd6Hr///8vcHJvYy9zZWxmL2V4ZQAAAQAAiggA AIYGAAAOSQEAGgMAdBJ8Ggg2Ct9V9xgLKdkVSgc8lNrznlW1S45V2wl+X5UE/Md+tlQh0J2Q78Q0UpLE kvMkEVOMvrWYHeWKwfCWH8VCvgC1J42rmOBud3GA7U8RabBaL9g6qcTHce3S8gKIFvfSA/cKOO+HXIuN UdCDmrOa8ymHgcDoY340fNMBlzyOpUahlOIUj3wqfUmOmu0vq47s0wfaO5P0RssjvGN4xBPwg7YYM5aJ ICKBEs+R93MkFN6KKj6VTMAsaSz4iVWXIu4K7rTy7/Wp7aArygughxW4PhrKLtAeCykomF+nXLyw9jIi wGuT7gfvLDfIxJ91u/oQDEtq2B2Jg2GXeJRyiyj1uhTWkU58jq6F3M7XLUwNobzhFMZ2odgA0cu00VTv aIdI9tLd62JQVDv+bEq/vBnLuDPrSzAYp4T7MQGqS5VBulBhryaxzRo3OU5npumW9RrgqWXV0NudUk/A sMGz59quhLszskP+uQKQ9usm/Dybh5NBaRpmBK/whjPXuPeasCqosawPQMl3O/rl8wvSDQbbbJ1QE4lO esdTtKiSjceNpXMM0cRwi4wzUUkJYEGz+FdM1lNFH/ddg8T5Ntt8qJa865ElSoT8BG0dd458cE1irdpS iKZmploA22mw245aGY5uyWZ4rpZz9T9Pf0F3GosTDWiOFewCXnj+E83GqhKw7k7sP3IGYiyGGCb0cY8U PZCR///kvVH/+1+i/sHIJejQHJtQ/hvfxW75xK+QIsjghCJPWJQM73F0SipRjCydGR8G2HCjXKQoc+9Z 8bIIecaVO4YpijXy3DrwYudwDktgQbRfds+sZf9Djx9ThozAFWrYn+ZmED9pwWChkQbKsT++Cv8vdij6 iguajUzjRCv5y4hGuPhTYsc2S3MSmkOGpyfu1a9XwLY/ZHiAm8fFbUR6MfdKXwA/8sAU1mmPhE04OGxS sHLDV77RgxvSDue+rnrux8Zv6C67+nPck9oYYFh+fMhVrxD4r1wt+KAIB6M8GJVMVKmw+p3DzIOdyMff mqIBB85egNwWV6okzn7wfWb2MyvNMOjQ6zm5JYZQ7SFihQeOmTmuYXLep1Y4ootMzk5cdaGeVbKqVdFT kodVQ6cWElGzfIwM4rHT9FvYnjpRX+SXPO9v5qJ4trr97K0cb4/GKdak6xt1TJWgtbchLe9hwTIklezn YFed0xE8sWIvLhVuYzlh3Pmf8pKGXxHpjBD7nItCfJtXEU44JigeMtfOKMuabQ0JXGnw7+jb3EIsYglZ NgyLI5Dnq/49+oVPrbYKxnIjKWXnxEwehTGRF+4+WV/lq1G81IJFZ9WUrK1maDJxF4YHWvbFN7z8METG gMITIbw6HYCSsjdDFrKX8StYFrnB+F4sBbzkJj39nU6ELR5FQLIq+oGCY7XtqZuiYmPttuNz33+EbrVJ xVFf9DAF8aEt2ID6JXw5pzZb+YdkVl//Fk8t389P2h/inlKntamGTwaZ87fEi7+oJMmLxZsBSOtiztMx UGioSbuKcoxwm5w0glzyCS1q4yDMazPcbfhNZYiOAlBXIc782gsmBXEW+7FldrN3Aay/+HhGqMKWlxVr J+/S3Z/jmU0XC7PuO3Pl0nXGihButJ9RHZxVLZIbAYloM42FJGy6JCzHgAiU7+91p505cKnuZCiASNpg MuFBZ/LBuRL0iz2Kyc3znZFuUcq1XvxEdJKHvPuxMwrlVMasLJet50rdt3EJCvc02OMWUaITg6Ft+oBs 6o9Z+Nzryr8ILu7UfUUm74lcKhcHZfLrf95IF0wGtS/NuBXmoiUgvcdKT+O9xcF1qpLCWWGZ9/xNvzQM pTYYYN6HpuoABn9kBjLdrzca2NvHt7cMXc6eKc9C4Z63VrKb79vxvDAKhyT1AmGLTNLpvVLV3yxO0cgG l/DnIteJhZ2s37KoReDkoXQl/kT6EiXpj7N2Zf6ueJOpiuQGGPH6+8EK9lYA7hTXW/mw96pMXS5Ukcl7 i0bddV1a2wAtxgQU48UsbUg7oSgCQDxsmpt8Ke6WJCi+14qpfPMGd6h74A/msBUzct7bWqlgLRgGBK/7 N7tI/KmpKfUZbjLFAi3C5GT6X8sBzI2C3YG0K72Cg4syBi80tB1qCVxhvumU8kSAN5CuNty70VhezdDn RwZlMug5emzmKJ/AQ76G/W9ipGhW7azivTBOQfpmNF42IXAkagjH0yX7a1TArVr7eYhFUe3ZHI2Z5bIA IA4AABwAAAAOAAAAGgMAAG/9//+jt/9HPkgVcjlhUbiSKOZt6fmQAMoGAAATAAAADgAAABoDAABv/f// o7f/Rz5IBErWWQAQAgAACwAAAA4AAAAaAwAAb/3/QuXwANAIAAABAgAADgAAABoDACOQ7HQgFTs34gg2 Rv83Mg7hHhkJdcrKX1Adze79eb6wXGmxn2jnXiE2D1MkDTW7KPHYBkuDGatwO9oRoNx8dFLx+j13RkTD 2HHB5wFw/0ZkuKunUNOGxn2Tzuboa3fydNBhWwh2EeIThtzyorxSgOgX/mdotvYqHBFbROnPJj92yrwQ 9ouY+0pMcU4+ovAug/raL8TwRBQLOPWe/qDg2tP2+/MiprOkbF713cUfkx0fZuJlfTkUfrlbT7QGwTH/ 4shLmzXGjII9ZN5L77Yknvd1ccIj415c2ctQkjhPekgRa6G0Df88XJF9zYTEVUKBIleqTBUhaEROmsX6 g4X6khEQFpj6hwQUIGnvkBXnFIJhE1Rq8iteCySmqEcu9BiJc6fLLe2pa1pT8Tfl577E4+R04gSdNyM4 jB2mlFsyF8xtZ9gCcYGZn8moRSQubJ1HhrNgapl1Jt1Evs4ldvGBssZNPP6abMBxlG3eqseCG8ixxtF5 qhGnYvPZteuc2RjZZ/+iaKVad8cwa/61C3ndIMGO00/8l4UZbUyhWApQOxPtWGn97923+u0ZaEVzctYz xWNeRB4Q43chEqUNMl1PpaJAv5crDwKv5S63K9BQtMAupgmNGi8e2H6fVunY/3KasR7g+MFHmlZvHjCs /c+i+FSovxqK8OggRka6syYnfwAAAABVUFghAAAAAABVUFghDhYOCmjQpkVJQV4u0AgAAAECAADwqAAA SQEAUPQAAAA= ";