結果

問題 No.2337 Equidistant
ユーザー iiljjiiljj
提出日時 2023-06-02 22:13:03
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 17,802 bytes
コンパイル時間 2,173 ms
コンパイル使用メモリ 157,556 KB
実行使用メモリ 67,708 KB
最終ジャッジ日時 2024-06-08 23:27:58
合計ジャッジ時間 11,461 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 303 ms
47,732 KB
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region Head */

// #include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert> // assert.h
#include <cmath>   // math.h
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;

#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))
#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))
#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))
#define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))
#define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))

#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define ISIZE(x) ((int)(x).size())
#define PERM(c)                                                                                                        \
    sort(ALL(c));                                                                                                      \
    for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))

#define endl '\n'

constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;

template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
    for (T &x : vec) is >> x;
    return is;
}
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline)
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
    return os;
}

template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力
    REP(i, 0, SIZE(arr)) is >> arr[i];
    return is;
}
template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}

template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
    is >> pair_var.first >> pair_var.second;
    return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力
    os << "(" << pair_var.first << ", " << pair_var.second << ")";
    return os;
}

// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, const T &map_var) {
    os << "{";
    REPI(itr, map_var) {
        os << *itr;
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    return out_iter(os, map_var);
}
template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) {
    os << "{";
    REPI(itr, map_var) {
        auto [key, value] = *itr;
        os << "(" << key << ", " << value << ")";
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {
    pq<T> pq_cp(pq_var);
    os << "{";
    if (!pq_cp.empty()) {
        os << pq_cp.top(), pq_cp.pop();
        while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
    }
    return os << "}";
}

// tuple 出力
template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) {
    if constexpr (N < std::tuple_size_v<tuple<Args...>>) {
        os << get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {
            os << ' ';
        } else if constexpr (end_line) {
            os << '\n';
        }
        return operator<< <N + 1, end_line>(os, a);
    }
    return os;
}
template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<< <0, true>(cout, a); }

void pprint() { cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail) > 0) cout << ' ';
    pprint(move(tail)...);
}

// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0) DUMPOUT << ", ";
    dump_func(move(tail)...);
}

// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
    if (comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
    if (comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif

#ifndef MYLOCAL
#undef DEBUG_
#endif

#ifdef DEBUG_
#define DEB
#define dump(...)                                                                                                      \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                                                                    \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl                                        \
            << "    ",                                                                                                 \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

#define VAR(type, ...)                                                                                                 \
    type __VA_ARGS__;                                                                                                  \
    assert((cin >> __VA_ARGS__));

template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }

struct AtCoderInitialize {
    static constexpr int IOS_PREC = 15;
    static constexpr bool AUTOFLUSH = false;
    AtCoderInitialize() {
        ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
        cout << fixed << setprecision(IOS_PREC);
        if (AUTOFLUSH) cout << unitbuf;
    }
} ATCODER_INITIALIZE;

void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }

template <typename T> constexpr void operator--(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i) v[i]--;
}
template <typename T> constexpr void operator++(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i) v[i]++;
}

/* #endregion */

// #include <atcoder/all>
// using namespace atcoder;

/* #region Graph */

// エッジ(本来エッジは双方向だが,ここでは単方向で管理)
template <class weight_t = int, class flow_t = int> struct Edge {
    int src;         // エッジ始点となる頂点
    int dst;         // エッジ終点となる頂点
    weight_t weight; // 重み
    flow_t cap;
    Edge() : src(0), dst(0), weight(0) {}
    Edge(int src, int dst, weight_t weight) : src(src), dst(dst), weight(weight) {}
    Edge(int src, int dst, weight_t weight, flow_t cap) : src(src), dst(dst), weight(weight), cap(cap) {}
    // Edge 標準出力
    friend ostream &operator<<(ostream &os, Edge &edge) {
        os << "(" << edge.src << " -> " << edge.dst << ", " << edge.weight << ")";
        return os;
    }
};

// 同じ頂点を始点とするエッジ集合
template <class weight_t = int, class flow_t = int> class Node : public vc<Edge<weight_t, flow_t>> {
  public:
    int idx;
    Node() : vc<Edge<weight_t, flow_t>>() {}
    // void add(int a, int b, weight_t w, flow_t cap) { this->emplace_back(a, b, w, cap); };
};

// graph[i] := 頂点 i を始点とするエッジ集合
template <class weight_t = int, class flow_t = int> class Graph : public vc<Node<weight_t, flow_t>> {
  public:
    Graph() : vc<Node<weight_t, flow_t>>() {}
    Graph(int n) : vc<Node<weight_t, flow_t>>(n) { REP(i, 0, n)(*this)[i].idx = i; }
    /** 単方向 */
    void add_arc(int a, int b, weight_t w = 1, flow_t cap = 1) { (*this)[a].emplace_back(a, b, w, cap); }
    /** 双方向 */
    void add_edge(int a, int b, weight_t w = 1, flow_t cap = 1) { add_arc(a, b, w, cap), add_arc(b, a, w, cap); }
    /** ノード追加 */
    int add_node() {
        int idx = (int)this->size();
        this->emplace_back();
        Node<weight_t, flow_t> &node = this->back();
        node.idx = idx;
        return idx;
    }
};
// using Array = vc<Weight>;
// using Matrix = vc<Array>;

/* #endregion */

/* #region LCA */

template <class weight_t = int, class flow_t = int> class LCA {
  public:
    const int n = 0;
    const int log2_n = 0;
    vc<vc<int>> parent;
    vc<int> depth;
    vc<weight_t> weight_distances;
    using G = Graph<weight_t, flow_t>;

    LCA() {}

    // コンストラクタ,前処理 O(N log N)
    LCA(const G &g, int root)
        : n(g.size()), log2_n(log2(n) + 1), parent(log2_n, vc<int>(n)), depth(n), weight_distances(n) {
        dfs(g, root, -1, 0, (weight_t)0);
        REP(k, 0, log2_n - 1) REP(v, 0, SIZE(g)) parent[k + 1][v] = (parent[k][v] < 0) ? -1 : parent[k][parent[k][v]];
    }

    // 根からの距離と1つ先の頂点を求める
    void dfs(const G &g, int v, int p, int d, weight_t w) {
        parent[0][v] = p, depth[v] = d;
        weight_distances[v] = w;
        for (const Edge<weight_t, flow_t> &e : g[v])
            if (e.dst != p) dfs(g, e.dst, v, d + 1, w + e.weight);
    }

    // 頂点 u, v の LCA を求めて返す,O(log N)
    int get(int u, int v) const {
        if (depth[u] > depth[v]) std::swap(u, v);
        // 深い方を浅い方と同じ浅さまで移動することで,LCA までの深さを同じにする
        REP(k, 0, log2_n) if ((depth[v] - depth[u]) >> k & 1) v = parent[k][v];
        if (u == v) return u;

        // 二分探索で LCA を求める
        REPR(k, log2_n - 1, 0) if (parent[k][u] != parent[k][v]) u = parent[k][u], v = parent[k][v];
        return parent[0][u];
    }

    // 頂点 v から dist だけ根のほうに遡った頂点を返す.
    // dist が根までの距離よりも大きいときは -1 を返す.
    int get_par(int v, int dist) const {
        // dist 遡れない
        int v_init_depth = get_depth(v);
        if (v_init_depth < dist) return -1;
        int u_depth = v_init_depth - dist;

        // 深い方を浅い方と同じ浅さまで移動することで,LCA までの深さを同じにする
        REP(k, 0, log2_n) if ((depth[v] - u_depth) >> k & 1) v = parent[k][v];
        return v;
    }

    // 根を深さ 0 として,頂点 v の深さを返す.O(1).
    int get_depth(int v) const {
        assert(0 <= v && v < n);
        return depth[v];
    }

    // 頂点 u, v の間を最短距離で結ぶときの辺数を返す.O(log N).
    int get_distance(int u, int v) const {
        const int r = get(u, v);
        return depth[u] + depth[v] - 2 * depth[r];
    }

    // 頂点 u, v の間を最短距離で結ぶときの距離を返す.O(log N).
    weight_t get_weight_distance(int u, int v) const {
        const int r = get(u, v);
        return weight_distances[u] + weight_distances[v] - weight_distances[r] * 2;
    }

    // {(src->lca), (lca->dst)} を返す
    array<vc<int>, 2> get_path2(const int src, const int dst) const {
        const int common = get(src, dst);
        vc<int> path_from_src = {src};
        {
            int v = src;
            while (v != common) {
                v = parent[0][v];
                path_from_src.push_back(v);
            }
        }
        vc<int> path_from_dst = {dst};
        {
            int v = dst;
            while (v != common) {
                v = parent[0][v];
                path_from_dst.push_back(v);
            }
        }
        reverse(ALL(path_from_dst));
        vc<int> &path_to_dst = path_from_dst;

        return {path_from_src, path_to_dst};
    }

    // src -> dst のパスを返す
    vc<int> get_path(const int src, const int dst) const {
        auto [path_from_src, path_to_dst] = get_path2(src, dst);
        path_from_src.reserve(ISIZE(path_from_src) + ISIZE(path_to_dst));
        TREP(int, i, 1, ISIZE(path_to_dst)) { path_from_src.push_back(path_to_dst[i]); }
        return path_from_src;
    }
};

/* #endregion */

/* #region EulerTour */

template <class weight_t = int> struct EulerTour {
    Graph<weight_t> &graph;
    vc<int> in, out; // 頂点→ツアー上のインデックス,の写像
    vc<int> tour;    // ツアー上のインデックス→頂点,の写像
    vc<int> sz;      // sz[i] := i を根とする部分木のサイズ
    vc<weight_t> weight;
    vc<int> sign; // 1(行きがけ) or -1(帰りがけ)
    int cnt;

    EulerTour(int n, Graph<weight_t> &graph) : graph(graph), in(n), out(n), sz(n) {
        tour.reserve(2 * n);
        weight.reserve(2 * n);
        sign.reserve(2 * n);
    }

    void dfs(int cur, int par) {
        for (Edge<weight_t> &e : graph[cur]) {
            if (e.dst == par) continue;
            weight.push_back(e.weight), sign.push_back(1), tour.push_back(e.dst);
            in[e.dst] = cnt++;
            dfs(e.dst, cur);
            weight.push_back(-e.weight), sign.push_back(-1), tour.push_back(e.dst);
            out[e.dst] = cnt++;
            sz[e.dst] = (out[e.dst] - in[e.dst] + 1) / 2;
        }
    }

    int execute(int root) {
        cnt = 0;

        weight.push_back(0), sign.push_back(1), tour.push_back(root);
        in[root] = cnt++;
        dfs(root, -1);
        weight.push_back(0), sign.push_back(-1), tour.push_back(root);
        out[root] = cnt++;
        sz[root] = (out[root] - in[root] + 1) / 2;
        return cnt;
    }
};

/* #endregion */

// Problem
void solve() {
    VAR(ll, n, q);
    vll a(n - 1), b(n - 1);
    REP(i, 0, n - 1) cin >> a[i], b[i];
    a--, b--;
    vll s(q), t(q);
    REP(i, 0, q) cin >> s[i], t[i];
    s--, t--;

    Graph<> graph(n);
    REP(i, 0, n - 1) graph.add_edge(a[i], b[i]);
    LCA<> lca(graph, 0);

    EulerTour tour(n, graph);
    tour.execute(0); // 0 が根

    REP(i, 0, q) {
        ll d = lca.get_distance(s[i], t[i]);
        if (d % 2 == 1) {
            pprint(0);
            continue;
        }
        ll m = lca.get(s[i], t[i]);
        ll d2 = d / 2;
        ll par_s = lca.get_par(s[i], d2);
        if (par_s == m) {
            // s から m へは一直線,t からは?
            ll par_t = lca.get_par(t[i], d2);
            if (par_t == m) {
                // s からも t からも同じ距離に LCA がある
                // -> m から伸びる枝のうち,s, t をそれぞれ含む部分木を除く全ての頂点が答え
                ll ex_s = lca.get_par(s[i], d2 - 1);
                ll ex_t = lca.get_par(t[i], d2 - 1);
                ll ans = n - tour.sz[ex_s] - tour.sz[ex_t];
                pprint(ans);
            } else {
                // m の部分木のうち,s を含む枝を除いた個数が答え.
                ll ex_s = lca.get_par(s[i], d2 - 1);
                ll ans = tour.sz[m] - tour.sz[ex_s];
                pprint(ans);
            }
        } else {
            // s から m へは一直線ではない.t からは一直線.
            // -> m の部分木のうち,t を含む枝を除いた個数が答え.
            ll ex_t = lca.get_par(t[i], d2 - 1);
            ll ans = tour.sz[m] - tour.sz[ex_t];
            pprint(ans);
        }
    }
}

// entry point
int main() {
    solve();
    return 0;
}
0