結果

問題 No.2369 Some Products
ユーザー 遭難者遭難者
提出日時 2023-06-30 21:44:50
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 19,867 bytes
コンパイル時間 2,068 ms
コンパイル使用メモリ 158,720 KB
実行使用メモリ 125,568 KB
最終ジャッジ日時 2024-07-07 09:25:24
合計ジャッジ時間 15,757 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>
#include <utility>
#include <tuple>
#include <cstdint>
#include <cstdio>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <deque>
#include <unordered_map>
#include <unordered_set>
#include <bitset>
#include <cctype>
#include <climits>
#include <functional>
#include <cassert>
#include <numeric>
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
using ll = long long;
#define vi vector<int>
#define vvi vector<vi>
#define vl vector<ll>
#define pii pair<int, int>
#define pll pair<ll, ll>
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define mod 998244353
using namespace std;
struct mint
{
    ll x;
    mint(ll x = 0) : x((x + mod) % mod) {}
    mint operator-() const { return mint(-x); }
    mint operator+=(const mint &a)
    {
        if ((x += a.x) >= mod)
            x -= mod;
        return *this;
    }
    mint &operator++()
    {
        if (++x == mod)
            x = 0;
        return *this;
    }
    mint operator++(int)
    {
        mint temp = *this;
        if (++x == mod)
            x = 0;
        return temp;
    }
    mint &operator-=(const mint &a)
    {
        if ((x -= a.x) < 0)
            x += mod;
        return *this;
    }
    mint &operator--()
    {
        if (--x < 0)
            x += mod;
        return *this;
    }
    mint operator--(int)
    {
        mint temp = *this;
        if (--x < 0)
            x += mod;
        return temp;
    }
    mint &operator*=(const mint &a)
    {
        (x *= a.x) %= mod;
        return *this;
    }
    mint operator+(const mint &a) const { return mint(*this) += a; }
    mint operator-(const mint &a) const { return mint(*this) -= a; }
    mint operator*(const mint &a) const { return mint(*this) *= a; }
    mint pow(ll t) const
    {
        if (!t)
            return 1;
        mint res = 1, v = *this;
        while (t)
        {
            if (t & 1)
                res *= v;
            v *= v;
            t >>= 1;
        }
        return res;
    }
    mint inv() const { return pow(mod - 2); }
    mint &operator/=(const mint &a) { return (*this) *= a.inv(); }
    mint operator/(const mint &a) const { return mint(*this) /= a; }
    bool operator==(const mint &a) const { return x == a.x; }
    bool operator!=(const mint &a) const { return x != a.x; }
    bool operator<(const mint &a) const { return x < a.x; }
    bool operator>(const mint &a) const { return x > a.x; }
    friend istream &operator>>(istream &is, mint &a) { return is >> a.x; }
    friend ostream &operator<<(ostream &os, const mint &a) { return os << a.x; }
};

template <class mint>
struct FPS : vector<mint>
{
    using vector<mint>::vector;
    FPS &operator+=(const FPS &r)
    {
        if (r.size() > this->size())
            this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++)
            (*this)[i] += r[i];
        return *this;
    }
    FPS &operator+=(const mint &r)
    {
        if (this->empty())
            this->resize(1);
        (*this)[0] += r;
        return *this;
    }
    FPS &operator-=(const FPS &r)
    {
        if (r.size() > this->size())
            this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++)
            (*this)[i] -= r[i];
        return *this;
    }
    FPS &operator-=(const mint &r)
    {
        if (this->empty())
            this->resize(1);
        (*this)[0] -= r;
        return *this;
    }
    FPS &operator*=(const mint &v)
    {
        for (int k = 0; k < (int)this->size(); k++)
            (*this)[k] *= v;
        return *this;
    }
    FPS &operator/=(const FPS &r)
    {
        if (this->size() < r.size())
        {
            this->clear();
            return *this;
        }
        const int n = this->size() - r.size() + 1;
        if ((int)r.size() <= 64)
        {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.back().inv();
            for (auto &x : g)
                x *= coeff;
            const int deg = (int)f.size() - (int)g.size() + 1;
            const int gs = g.size();
            FPS quo(deg);
            for (int i = deg - 1; i >= 0; i--)
            {
                quo[i] = f[i + gs - 1];
                for (int j = 0; j < gs; j++)
                    f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }
    FPS &operator%=(const FPS &r)
    {
        *this -= *this / r * r;
        shrink();
        return *this;
    }
    FPS operator+(const FPS &r) const { return FPS(*this) += r; }
    FPS operator+(const mint &v) const { return FPS(*this) += v; }
    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
    FPS operator-(const mint &v) const { return FPS(*this) -= v; }
    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
    FPS operator*(const mint &v) const { return FPS(*this) *= v; }
    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
    FPS operator-() const
    {
        FPS ret(this->size());
        for (int i = 0; i < (int)this->size(); i++)
            ret[i] = -(*this)[i];
        return ret;
    }
    void shrink()
    {
        while (this->size() && this->back() == mint(0))
            this->pop_back();
    }
    FPS rev() const
    {
        FPS ret(*this);
        reverse(begin(ret), end(ret));
        return ret;
    }
    FPS dot(FPS r) const
    {
        FPS ret(min(this->size(), r.size()));
        for (int i = 0; i < (int)ret.size(); i++)
            ret[i] = (*this)[i] * r[i];
        return ret;
    }
    FPS pre(int sz) const
    {
        return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
    }
    FPS operator>>(int sz) const
    {
        if ((int)this->size() <= sz)
            return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }
    FPS operator<<(int sz) const
    {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }
    FPS diff() const
    {
        const int n = (int)this->size();
        FPS ret(max(0, n - 1));
        const mint one(1);
        mint coeff(1);
        for (int i = 1; i < n; i++)
        {
            ret[i - 1] = (*this)[i] * coeff;
            coeff += one;
        }
        return ret;
    }
    FPS integral() const
    {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if (n > 0)
            ret[1] = mint(1);
        for (int i = 2; i <= n; i++)
            ret[i] = (-ret[mod % i]) * (mod / i);
        for (int i = 0; i < n; i++)
            ret[i + 1] *= (*this)[i];
        return ret;
    }
    mint eval(mint x) const
    {
        mint r = 0, w = 1;
        for (auto &v : *this)
            r += w * v, w *= x;
        return r;
    }
    FPS log(int deg = -1) const
    {
        assert((*this)[0] == mint(1));
        if (deg == -1)
            deg = (int)this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }
    FPS pow(int64_t k, int deg = -1) const
    {
        const int n = (int)this->size();
        if (deg == -1)
            deg = n;
        if (k == 0)
        {
            FPS ret(deg);
            if (deg)
                ret[0] = 1;
            return ret;
        }
        for (int i = 0; i < n; i++)
        {
            if ((*this)[i] != mint(0))
            {
                const mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
                ret *= (*this)[i].pow(k);
                ret = (ret << (i * k)).pre(deg);
                if ((int)ret.size() < deg)
                    ret.resize(deg, mint(0));
                return ret;
            }
            if (__int128_t(i + 1) * k >= deg)
                return FPS(deg, mint(0));
        }
        return FPS(deg, mint(0));
    }
    static void *ntt_ptr;
    static void set_fft();
    FPS &operator*=(const FPS &r);
    void ntt();
    void intt();
    void ntt_doubling();
    static int ntt_pr();
    FPS inv(int deg = -1) const;
    FPS exp(int deg = -1) const;
};
template <class mint>
void *FPS<mint>::ntt_ptr = nullptr;

template <class mint>
struct NTT
{
    static constexpr uint32_t pr = 3;
    static_assert(mod == 998244353);
    static constexpr int level = __builtin_ctzll(mod - 1);
    mint dw[level], dy[level];

    void setwy(const int k)
    {
        mint w[level], y[level];
        w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
        y[k - 1] = w[k - 1].inv();
        for (int i = k - 2; i > 0; i--)
            w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
        dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
        for (int i = 3; i < k; ++i)
        {
            dw[i] = dw[i - 1] * y[i - 2] * w[i];
            dy[i] = dy[i - 1] * w[i - 2] * y[i];
        }
    }
    NTT() { setwy(level); }
    void fft4(vector<mint> &a, const int k)
    {
        if ((int)a.size() <= 1)
            return;
        if (k == 1)
        {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        if (k & 1)
        {
            const int v = 1 << (k - 1);
            for (int j = 0; j < v; j++)
            {
                mint ajv = a[j + v];
                a[j + v] = a[j] - ajv;
                a[j] += ajv;
            }
        }
        int u = 1 << (2 + (k & 1));
        int v = 1 << (k - 2 - (k & 1));
        const mint one = mint(1);
        const mint imag = dw[1];
        while (v)
        {
            // jh = 0
            {
                int j0 = 0;
                int j1 = v;
                int j2 = j1 + v;
                int j3 = j2 + v;
                for (; j0 < v; j0++, j1++, j2++, j3++)
                {
                    const mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
                    const mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    const mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
                }
            }
            // jh >= 1
            mint ww = one, xx = one * dw[2], wx = one;
            for (int jh = 4; jh < u;)
            {
                ww = xx * xx, wx = ww * xx;
                int j0 = jh * v;
                const int je = j0 + v;
                int j2 = je + v;
                for (; j0 < je; j0++, j2++)
                {
                    const mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
                               t3 = a[j2 + v] * wx;
                    const mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    const mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
                }
                xx *= dw[__builtin_ctzll((jh += 4))];
            }
            u <<= 2;
            v >>= 2;
        }
    }
    void ifft4(vector<mint> &a, const int k)
    {
        if ((int)a.size() <= 1)
            return;
        if (k == 1)
        {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        int u = 1 << (k - 2);
        int v = 1;
        const mint one = mint(1);
        const mint imag = dy[1];
        while (u)
        {
            // jh = 0
            {
                int j0 = 0;
                int j1 = v;
                int j2 = v + v;
                int j3 = j2 + v;
                for (; j0 < v; j0++, j1++, j2++, j3++)
                {
                    const mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
                    const mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    const mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
                    a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
                    a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
                }
            }
            // jh >= 1
            mint ww = one, xx = one * dy[2], yy = one;
            u <<= 2;
            for (int jh = 4; jh < u;)
            {
                ww = xx * xx, yy = xx * imag;
                int j0 = jh * v;
                const int je = j0 + v;
                int j2 = je + v;
                for (; j0 < je; j0++, j2++)
                {
                    const mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
                    const mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    const mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
                    a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
                    a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
                }
                xx *= dy[__builtin_ctzll(jh += 4)];
            }
            u >>= 4;
            v <<= 2;
        }
        if (k & 1)
        {
            u = 1 << (k - 1);
            for (int j = 0; j < u; j++)
            {
                mint ajv = a[j] - a[j + u];
                a[j] += a[j + u];
                a[j + u] = ajv;
            }
        }
    }
    void ntt(vector<mint> &a)
    {
        if ((int)a.size() <= 1)
            return;
        fft4(a, __builtin_ctz(a.size()));
    }
    void intt(vector<mint> &a)
    {
        if ((int)a.size() <= 1)
            return;
        ifft4(a, __builtin_ctz(a.size()));
        const mint iv = mint(a.size()).inv();
        for (auto &x : a)
            x *= iv;
    }
    vector<mint> multiply(const vector<mint> &a, const vector<mint> &b)
    {
        const int l = a.size() + b.size() - 1;
        if (min<int>(a.size(), b.size()) <= 40)
        {
            vector<mint> s(l);
            for (int i = 0; i < (int)a.size(); i++)
                for (int j = 0; j < (int)b.size(); j++)
                    s[i + j] += a[i] * b[j];
            return s;
        }
        int k = 2, M = 4;
        while (M < l)
            M <<= 1, k++;
        setwy(k);
        vector<mint> s(M), t(M);
        for (int i = 0; i < (int)a.size(); i++)
            s[i] = a[i];
        for (int i = 0; i < (int)b.size(); i++)
            t[i] = b[i];
        fft4(s, k);
        fft4(t, k);
        for (int i = 0; i < M; i++)
            s[i] *= t[i];
        ifft4(s, k);
        s.resize(l);
        const mint invm = mint(M).inv();
        for (int i = 0; i < l; i++)
            s[i] *= invm;
        return s;
    }
    void ntt_doubling(vector<mint> &a)
    {
        const int M = (int)a.size();
        auto b = a;
        intt(b);
        mint r = 1, zeta = mint(pr).pow((mod - 1) / (M << 1));
        for (int i = 0; i < M; i++)
            b[i] *= r, r *= zeta;
        ntt(b);
        copy(begin(b), end(b), back_inserter(a));
    }
};

template <class mint>
void FPS<mint>::set_fft()
{
    if (!ntt_ptr)
        ntt_ptr = new NTT<mint>;
}
template <class mint>
FPS<mint> &FPS<mint>::operator*=(const FPS<mint> &r)
{
    if (this->empty() || r.empty())
    {
        this->clear();
        return *this;
    }
    set_fft();
    const auto ret = static_cast<NTT<mint> *>(ntt_ptr)->multiply(*this, r);
    return *this = FPS<mint>(ret.begin(), ret.end());
}
template <class mint>
void FPS<mint>::ntt()
{
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->ntt(*this);
}
template <class mint>
void FPS<mint>::intt()
{
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->intt(*this);
}
template <class mint>
void FPS<mint>::ntt_doubling()
{
    set_fft();
    static_cast<NTT<mint> *>(ntt_ptr)->ntt_doubling(*this);
}
template <class mint>
int FPS<mint>::ntt_pr()
{
    set_fft();
    return static_cast<NTT<mint> *>(ntt_ptr)->pr;
}
template <class mint>
FPS<mint> FPS<mint>::inv(int deg) const
{
    assert((*this)[0] != mint(0));
    if (deg == -1)
        deg = (int)this->size();
    FPS<mint> res(deg);
    res[0] = {mint(1) / (*this)[0]};
    for (int d = 1; d < deg; d <<= 1)
    {
        FPS<mint> f(2 * d), g(2 * d);
        for (int j = 0; j < min((int)this->size(), 2 * d); j++)
            f[j] = (*this)[j];
        for (int j = 0; j < d; j++)
            g[j] = res[j];
        f.ntt();
        g.ntt();
        for (int j = 0; j < 2 * d; j++)
            f[j] *= g[j];
        f.intt();
        for (int j = 0; j < d; j++)
            f[j] = 0;
        f.ntt();
        for (int j = 0; j < 2 * d; j++)
            f[j] *= g[j];
        f.intt();
        for (int j = d; j < min(2 * d, deg); j++)
            res[j] = -f[j];
    }
    return res.pre(deg);
}

template <class mint>
FPS<mint> FPS<mint>::exp(int deg) const
{
    using fps = FPS<mint>;
    assert((*this).size() == 0 || (*this)[0] == mint(0));
    if (deg == -1)
        deg = this->size();

    fps inv;
    inv.reserve(deg + 1);
    inv.push_back(mint(0));
    inv.push_back(mint(1));

    auto inplace_integral = [&](fps &F) -> void
    {
        const int n = (int)F.size();
        while ((int)inv.size() <= n)
        {
            const int i = inv.size();
            inv.push_back((-inv[mod % i]) * (mod / i));
        }
        F.insert(begin(F), mint(0));
        for (int i = 1; i <= n; i++)
            F[i] *= inv[i];
    };
    auto inplace_diff = [](fps &F) -> void
    {
        if (F.empty())
            return;
        F.erase(begin(F));
        mint coeff = 1, one = 1;
        for (int i = 0; i < (int)F.size(); i++)
        {
            F[i] *= coeff;
            coeff += one;
        }
    };
    fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
    for (int m = 2; m < deg; m *= 2)
    {
        auto y = b;
        y.resize(2 * m);
        y.ntt();
        z1 = z2;
        fps z(m);
        for (int i = 0; i < m; i++)
            z[i] = y[i] * z1[i];
        z.intt();
        fill(begin(z), begin(z) + m / 2, mint(0));
        z.ntt();
        for (int i = 0; i < m; i++)
            z[i] *= -z1[i];
        z.intt();
        c.insert(end(c), begin(z) + m / 2, end(z));
        z2 = c;
        z2.resize(2 * m);
        z2.ntt();
        fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
        x.resize(m);
        inplace_diff(x);
        x.push_back(mint(0));
        x.ntt();
        for (int i = 0; i < m; i++)
            x[i] *= y[i];
        x.intt();
        x -= b.diff();
        x.resize(2 * m);
        for (int i = 0; i < m - 1; i++)
            x[m + i] = x[i], x[i] = mint(0);
        x.ntt();
        for (int i = 0; i < 2 * m; i++)
            x[i] *= z2[i];
        x.intt();
        x.pop_back();
        inplace_integral(x);
        for (int i = m; i < min<int>(this->size(), 2 * m); i++)
            x[i] += (*this)[i];
        fill(begin(x), begin(x) + m, mint(0));
        x.ntt();
        for (int i = 0; i < 2 * m; i++)
            x[i] *= y[i];
        x.intt();
        b.insert(end(b), begin(x) + m, end(x));
    }
    return fps{begin(b), begin(b) + deg};
}
void solve()
{
    int n;
    cin >> n;
    vector<FPS<mint>> dp(1, FPS<mint>(1));
    dp[0][0] = 1;
    rep(j, n)
    {
        auto addition = dp[j];
        addition.push_back(0);
        int x;
        cin >> x;
        rep(i, j + 1) addition[i + 1] += x * dp[j][i].x;
        dp.push_back(addition);
    }
    int query;
    cin >> query;
    rep(loop, query)
    {
        int l, r, k;
        cin >> l >> r >> k;
        l--;
        auto x = dp[r] / dp[l];
        cout << '\n';
        cout << x[k].x << '\n';
    }
}
int main()
{
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    solve();
    return 0;
}
0