結果
| 問題 |
No.2369 Some Products
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-06-30 23:08:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 15,208 bytes |
| コンパイル時間 | 3,929 ms |
| コンパイル使用メモリ | 195,856 KB |
| 最終ジャッジ日時 | 2025-02-15 04:35:08 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 1 TLE * 1 -- * 12 |
ソースコード
#line 1 "a.cpp"
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <climits>
#include <cmath>
#include <complex>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
/* macro */
#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
/* macro end */
/* template */
namespace ebi {
#ifdef LOCAL
#define debug(...) \
std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \
debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif
void debug_out() {
std::cerr << std::endl;
}
template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
std::cerr << " " << h;
if (sizeof...(t) > 0) std::cerr << " :";
debug_out(t...);
}
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
return os << pa.first << " " << pa.second;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
return os >> pa.first >> pa.second;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
for (std::size_t i = 0; i < vec.size(); i++)
os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
for (T &e : vec) std::cin >> e;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
if (opt) {
os << opt.value();
} else {
os << "invalid value";
}
return os;
}
using std::size_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> T pow(T x, i64 n) {
T res = 1;
while (n > 0) {
if (n & 1) res = res * x;
x = x * x;
n >>= 1;
}
return res;
}
template <class T> struct Edge {
int to;
T cost;
Edge(int _to, T _cost = 1) : to(_to), cost(_cost) {}
};
template <class T> struct Graph : std::vector<std::vector<Edge<T>>> {
using std::vector<std::vector<Edge<T>>>::vector;
void add_edge(int u, int v, T w, bool directed = false) {
(*this)[u].emplace_back(v, w);
if (directed) return;
(*this)[v].emplace_back(u, w);
}
};
struct graph : std::vector<std::vector<int>> {
using std::vector<std::vector<int>>::vector;
void add_edge(int u, int v, bool directed = false) {
(*this)[u].emplace_back(v);
if (directed) return;
(*this)[v].emplace_back(u);
}
};
constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;
constexpr int INF = std::numeric_limits<int>::max() / 2;
const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};
} // namespace ebi
#line 2 "fps/fps.hpp"
#line 7 "fps/fps.hpp"
namespace ebi {
template <class mint, std::vector<mint> (*convolution)(
const std::vector<mint> &, const std::vector<mint> &)>
struct FormalPowerSeries : std::vector<mint> {
private:
using std::vector<mint>::vector;
using std::vector<mint>::vector::operator=;
using FPS = FormalPowerSeries;
public:
FPS operator+(const FPS &rhs) const noexcept {
return FPS(*this) += rhs;
}
FPS operator-(const FPS &rhs) const noexcept {
return FPS(*this) -= rhs;
}
FPS operator*(const FPS &rhs) const noexcept {
return FPS(*this) *= rhs;
}
FPS operator/(const FPS &rhs) const noexcept {
return FPS(*this) /= rhs;
}
FPS operator%(const FPS &rhs) const noexcept {
return FPS(*this) %= rhs;
}
FPS operator+(const mint &rhs) const noexcept {
return FPS(*this) += rhs;
}
FPS operator-(const mint &rhs) const noexcept {
return FPS(*this) -= rhs;
}
FPS operator*(const mint &rhs) const noexcept {
return FPS(*this) *= rhs;
}
FPS operator/(const mint &rhs) const noexcept {
return FPS(*this) /= rhs;
}
FPS &operator+=(const FPS &rhs) noexcept {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) {
(*this)[i] += rhs[i];
}
return *this;
}
FPS &operator-=(const FPS &rhs) noexcept {
if (this->size() < rhs.size()) this->resize(rhs.size());
for (int i = 0; i < (int)rhs.size(); ++i) {
(*this)[i] -= rhs[i];
}
return *this;
}
FPS &operator*=(const FPS &rhs) noexcept {
*this = convolution(*this, rhs);
return *this;
}
FPS &operator/=(const FPS &rhs) noexcept {
int n = deg() - 1;
int m = rhs.deg() - 1;
if (n < m) {
*this = {};
return *this;
}
*this = (*this).rev() * rhs.rev().inv(n - m + 1);
(*this).resize(n - m + 1);
std::reverse((*this).begin(), (*this).end());
return *this;
}
FPS &operator%=(const FPS &rhs) noexcept {
*this -= *this / rhs * rhs;
shrink();
return *this;
}
FPS &operator+=(const mint &rhs) noexcept {
if (this->empty()) this->resize(1);
(*this)[0] += rhs;
return *this;
}
FPS &operator-=(const mint &rhs) noexcept {
if (this->empty()) this->resize(1);
(*this)[0] -= rhs;
return *this;
}
FPS &operator*=(const mint &rhs) noexcept {
for (int i = 0; i < deg(); ++i) {
(*this)[i] *= rhs;
}
return *this;
}
FPS &operator/=(const mint &rhs) noexcept {
mint inv_rhs = rhs.inv();
for (int i = 0; i < deg(); ++i) {
(*this)[i] *= inv_rhs;
}
return *this;
}
FPS operator>>(int d) const {
if (deg() <= d) return {};
FPS f = *this;
f.erase(f.begin(), f.begin() + d);
return f;
}
FPS operator<<(int d) const {
FPS f = *this;
f.insert(f.begin(), d, 0);
return f;
}
FPS operator-() const {
FPS g(this->size());
for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i];
return g;
}
FPS pre(int sz) const {
return FPS(this->begin(), this->begin() + std::min(deg(), sz));
}
FPS rev() const {
auto f = *this;
std::reverse(f.begin(), f.end());
return f;
}
FPS differential() const {
int n = deg();
FPS g(std::max(0, n - 1));
for (int i = 0; i < n - 1; i++) {
g[i] = (*this)[i + 1] * (i + 1);
}
return g;
}
FPS integral() const {
int n = deg();
FPS g(n + 1);
g[0] = 0;
if (n > 0) g[1] = 1;
auto mod = mint::mod();
for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i];
return g;
}
FPS inv(int d = -1) const {
int n = 1;
if (d < 0) d = deg();
FPS g(n);
g[0] = (*this)[0].inv();
while (n < d) {
n <<= 1;
g = (g * 2 - g * g * this->pre(n)).pre(n);
}
g.resize(d);
return g;
}
FPS log(int d = -1) const {
assert((*this)[0].val() == 1);
if (d < 0) d = deg();
return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral();
}
FPS exp(int d = -1) const {
assert((*this)[0].val() == 0);
int n = 1;
if (d < 0) d = deg();
FPS g(n);
g[0] = 1;
while (n < d) {
n <<= 1;
g = (g * (this->pre(n) - g.log(n) + 1)).pre(n);
}
g.resize(d);
return g;
}
FPS pow(int64_t k, int d = -1) const {
const int n = deg();
if (d < 0) d = n;
if (k == 0) {
FPS f(d);
if (d > 0) f[0] = 1;
return f;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != 0) {
mint rev = (*this)[i].inv();
FPS f = (((*this * rev) >> i).log(d) * k).exp(d);
f *= (*this)[i].pow(k);
f = (f << (i * k)).pre(d);
if (f.deg() < d) f.resize(d);
return f;
}
if (i + 1 >= (d + k - 1) / k) break;
}
return FPS(d);
}
int deg() const {
return (*this).size();
}
void shrink() {
while ((!this->empty()) && this->back() == 0) this->pop_back();
}
int count_terms() const {
int c = 0;
for (int i = 0; i < deg(); i++) {
if ((*this)[i] != 0) c++;
}
return c;
}
std::optional<FPS> sqrt(int d = -1) const;
};
} // namespace ebi
#line 2 "fps/fps_sparse.hpp"
#line 5 "fps/fps_sparse.hpp"
#line 2 "utility/modint_func.hpp"
#line 5 "utility/modint_func.hpp"
namespace ebi {
template <class mint> mint inv(int n) {
static const int mod = mint::mod();
static std::vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n -= mod;
while (int(dat.size()) <= n) {
int num = dat.size();
int q = (mod + num - 1) / num;
dat.emplace_back(dat[num * q - mod] * mint(q));
}
return dat[n];
}
} // namespace ebi
#line 7 "fps/fps_sparse.hpp"
namespace ebi {
template <class mint>
std::vector<mint> mul_sparse(const std::vector<mint> &f,
const std::vector<mint> &g) {
int n = f.size();
int m = g.size();
std::vector<std::pair<int, mint>> cf, cg;
for (int i = 0; i < n; i++) {
if (f[i] != 0) cf.emplace_back(i, f[i]);
}
for (int i = 0; i < m; i++) {
if (g[i] != 0) cg.emplace_back(i, g[i]);
}
std::vector<mint> h(n + m - 1);
for (auto [i, p] : cf) {
for (auto [j, q] : cg) {
h[i + j] += p * q;
}
}
return h;
}
template <class mint>
std::vector<mint> inv_sparse(const std::vector<mint> &f, int d = -1) {
assert(f[0] != 0);
if (d < 0) {
d = f.size();
}
std::vector<std::pair<int, mint>> ret;
for (int i = 1; i < int(f.size()); i++) {
if (f[i] != 0) {
ret.emplace_back(i, f[i]);
}
}
std::vector<mint> g(d);
g[0] = f[0].inv();
for (int i = 1; i < d; i++) {
for (auto [k, p] : ret) {
if (i - k < 0) break;
g[i] -= g[i - k] * p;
}
g[i] *= g[0];
}
return g;
}
template <class mint>
std::vector<mint> exp_sparse(const std::vector<mint> &f, int d = -1) {
int n = f.size();
if (d < 0) d = n;
std::vector<std::pair<int, mint>> ret;
for (int i = 1; i < n; i++) {
if (f[i] != 0) {
ret.emplace_back(i - 1, f[i] * i);
}
}
std::vector<mint> g(d);
g[0] = 1;
for (int i = 0; i < d - 1; i++) {
for (auto [k, p] : ret) {
if (i - k < 0) break;
g[i + 1] += g[i - k] * p;
}
g[i + 1] *= inv<mint>(i + 1);
}
return g;
}
template <class mint>
std::vector<mint> log_sparse(const std::vector<mint> &f, int d = -1) {
int n = f.size();
if (d < 0) d = n;
std::vector<mint> df(d);
for (int i = 0; i < std::min(d, n - 1); i++) {
df[i] = f[i + 1] * (i + 1);
}
auto dg = mul_sparse(df, inv_sparse(f));
dg.resize(d);
std::vector<mint> g(d);
for (int i = 0; i < d - 1; i++) {
g[i + 1] = dg[i] * inv<mint>(i + 1);
}
return g;
}
template <class mint>
std::vector<mint> pow_sparse_1(const std::vector<mint> &f, long long k,
int d = -1) {
int n = f.size();
assert(n == 0 || f[0] == 1);
std::vector<std::pair<int, mint>> ret;
for (int i = 1; i < n; i++) {
if (f[i] != 0) ret.emplace_back(i, f[i]);
}
std::vector<mint> g(d);
g[0] = 1;
for (int i = 0; i < d - 1; i++) {
for (const auto &[j, cf] : ret) {
if (i + 1 - j < 0) break;
g[i + 1] +=
(mint(k) * mint(j) - mint(i - j + 1)) * cf * g[i + 1 - j];
}
g[i + 1] *= inv<mint>(i + 1);
}
return g;
}
template <class mint>
std::vector<mint> pow_sparse(const std::vector<mint> &f, long long k,
int d = -1) {
int n = f.size();
if (d < 0) d = n;
assert(k >= 0);
if (k == 0) {
std::vector<mint> g(d);
if (d > 0) g[0] = 1;
return g;
}
for (int i = 0; i < n; i++) {
if (f[i] != 0) {
mint rev = f[i].inv();
std::vector<mint> f2(n - i);
for (int j = i; j < n; j++) {
f2[j - i] = f[j] * rev;
}
f2 = pow_sparse_1(f2, k, d);
mint fk = f[i].pow(k);
std::vector<mint> g(d);
for (int j = 0; j < int(f2.size()); j++) {
if (j + i * k >= d) break;
g[j + i * k] = f2[j] * fk;
}
return g;
}
if (i >= (d + k - 1) / k) break;
}
return std::vector<mint>(d);
}
} // namespace ebi
#line 167 "a.cpp"
#include <atcoder/convolution>
#include <atcoder/segtree>
#include <atcoder/modint>
namespace ebi {
using mint = atcoder::modint998244353;
using FPS = FormalPowerSeries<mint, atcoder::convolution>;
FPS op(FPS lhs, FPS rhs) {
return lhs + rhs;
}
FPS e() {
return {0};
}
void main_() {
int n;
std::cin >> n;
atcoder::segtree<FPS, op, e> seg(n);
rep(i,0,n) {
i64 p;
std::cin >> p;
std::vector<mint> f(n+1);
f[0] = 1;
f[1] = p;
f = log_sparse(f, n+1);
FPS g(n+1);
rep(i,0,n+1) g[i] = f[i];
seg.set(i, g);
}
int q;
std::cin >> q;
while(q--) {
int a,b,k;
std::cin >> a >> b >> k;
a--;
std::cout << seg.prod(a, b).exp(k + 1)[k].val() << '\n';
}
}
} // namespace ebi
int main() {
std::cout << std::fixed << std::setprecision(15);
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}