結果
| 問題 |
No.2403 "Eight" Bridges of Königsberg
|
| コンテスト | |
| ユーザー |
Focus_Sash
|
| 提出日時 | 2023-08-04 21:45:36 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,307 bytes |
| コンパイル時間 | 2,345 ms |
| コンパイル使用メモリ | 213,444 KB |
| 最終ジャッジ日時 | 2025-02-15 22:36:03 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 21 WA * 10 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
namespace util {
using ll = long long;
using vl = std::vector<long long>;
using pl = std::pair<long long, long long>;
constexpr long long kInf = std::numeric_limits<long long>::max() / 8;
constexpr long long kMax = std::numeric_limits<long long>::max();
template <typename T, typename U>
inline bool UpdateMax(T &x, const U &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
template <typename T, typename U>
inline bool UpdateMin(T &x, const U &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
// verified
inline long long Pow(long long x, long long n) {
assert(n >= 0);
if (x == 0) return 0;
long long res = 1LL;
while (n > 0) {
if (n & 1) {
assert(x != 0 && std::abs(res) <= kMax / std::abs(x));
res = res * x;
}
if (n >>= 1) {
assert(x != 0 && std::abs(x) <= kMax / std::abs(x));
x = x * x;
}
}
return res;
}
// verified
inline long long Mod(long long n, const long long m) {
// returns the "arithmetic modulo"
// for a pair of integers (n, m) with m != 0, there exists a unique pair of
// integer (q, r) s.t. n = qm + r and 0 <= r < |m| returns this r
assert(m != 0);
if (m < 0) return Mod(n, -m);
if (n >= 0)
return n % m;
else
return (m + n % m) % m;
}
inline long long Quotient(long long n, long long m) {
// returns the "arithmetic quotient"
assert((n - Mod(n, m)) % m == 0);
return (n - Mod(n, m)) / m;
}
inline long long DivFloor(long long n, long long m) {
// returns floor(n / m)
assert(m != 0);
if (m < 0) {
n = -n;
m = -m;
}
if (n >= 0)
return n / m;
else if (n % m == 0)
return -(abs(n) / m);
else
return -(abs(n) / m) - 1;
}
inline long long DivCeil(long long n, long long m) {
// returns ceil(n / m)
assert(m != 0);
if (n % m == 0)
return DivFloor(n, m);
else
return DivFloor(n, m) + 1;
}
template <typename T>
inline T Sum(const std::vector<T> &vec) {
return std::accumulate(vec.begin(), vec.end(), T(0));
}
} // namespace util
using namespace util;
template <typename T>
std::vector<T> Deduplicate(std::vector<T> v) {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
return v;
}
using Graph = std::vector<std::vector<int>>;
Graph TransposeGraph(const Graph &g) {
int n = (int)size(g);
Graph res(n);
for (int i = 0; i < n; ++i) {
for (int to : g[i]) {
res[to].emplace_back(i);
}
}
return res;
}
// 返り値:強連結成分を表すリストのリスト(トポロジカルソート済み)・各頂点がリストの何番に入っているかを表すリスト・強連結成分を頂点とするグラフ
std::tuple<std::vector<std::vector<int>>, std::vector<int>, Graph> Scc(
const Graph &g) {
int n = (int)size(g);
std::vector<int> time(n);
std::vector<int> seen(n);
{
int counter = 0;
auto CalculateReachingTime = [&](auto &&self, const int s) -> void {
seen[s] = true;
for (int nv : g[s]) {
if (seen[nv]) continue;
self(self, nv);
}
time[s] = counter;
counter++;
};
for (int i = 0; i < n; ++i) {
if (!seen[i]) CalculateReachingTime(CalculateReachingTime, i);
}
}
Graph g_transpose = TransposeGraph(g);
std::vector<int> vertex_of_time(n);
for (int i = 0; i < n; ++i) {
vertex_of_time[time[i]] = i;
}
std::vector<std::vector<int>> connected_components;
{
std::vector<int> transpose_seen(n, false);
auto SearchInComponent = [&g_transpose, &transpose_seen](
auto &&self, const int s,
std::vector<int> &component) -> void {
component.emplace_back(s);
transpose_seen[s] = true;
for (int nv : g_transpose[s]) {
if (transpose_seen[nv]) continue;
self(self, nv, component);
}
};
for (int t = n - 1; t >= 0; t--) {
int v = vertex_of_time[t];
if (!transpose_seen[v]) {
std::vector<int> component;
SearchInComponent(SearchInComponent, v, component);
connected_components.emplace_back(component);
}
}
}
int c = (int)connected_components.size();
std::vector<int> owner(n);
for (int i = 0; i < c; ++i) {
for (int v : connected_components[i]) {
owner[v] = i;
}
}
Graph contracted_graph(c);
for (int i = 0; i < n; i++) {
int from = owner[i];
for (auto v : g[i]) {
int to = owner[v];
if (from != to) {
contracted_graph[from].emplace_back(to);
}
}
}
for (int v = 0; v < c; ++v) {
Deduplicate(contracted_graph[v]);
}
return {connected_components, owner, contracted_graph};
}
void solve() {
ll n, m;
cin >> n >> m;
Graph g(n);
vl od(n, 0), id(n, 0);
for (ll i = 0; i < m; i++) {
ll a, b;
cin >> a >> b;
a--;
b--;
od[a]++;
id[b]++;
g[a].emplace_back(b);
}
ll ans = 0;
for (ll i = 0; i < n; i++) {
if (od[i] > id[i]) {
ans += od[i] - id[i];
}
}
if (ans <= 1) {
cout << 0 << '\n';
} else {
cout << ans - 1 << '\n';
}
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cout << std::fixed << std::setprecision(15);
solve();
return 0;
}
Focus_Sash