結果
問題 | No.2406 Difference of Coordinate Squared |
ユーザー | fuppy_kyopro |
提出日時 | 2023-08-04 22:20:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 20,508 bytes |
コンパイル時間 | 3,417 ms |
コンパイル使用メモリ | 227,256 KB |
実行使用メモリ | 43,392 KB |
最終ジャッジ日時 | 2024-10-14 20:19:47 |
合計ジャッジ時間 | 18,267 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 92 ms
43,008 KB |
testcase_01 | AC | 102 ms
43,136 KB |
testcase_02 | AC | 102 ms
43,008 KB |
testcase_03 | RE | - |
testcase_04 | AC | 101 ms
43,136 KB |
testcase_05 | AC | 101 ms
43,136 KB |
testcase_06 | AC | 94 ms
42,984 KB |
testcase_07 | AC | 95 ms
43,008 KB |
testcase_08 | AC | 97 ms
43,136 KB |
testcase_09 | AC | 96 ms
43,136 KB |
testcase_10 | AC | 94 ms
43,136 KB |
testcase_11 | AC | 102 ms
43,120 KB |
testcase_12 | AC | 101 ms
43,008 KB |
testcase_13 | AC | 96 ms
43,136 KB |
testcase_14 | AC | 97 ms
43,008 KB |
testcase_15 | AC | 97 ms
43,008 KB |
testcase_16 | AC | 94 ms
43,136 KB |
testcase_17 | AC | 95 ms
43,136 KB |
testcase_18 | RE | - |
testcase_19 | AC | 101 ms
43,008 KB |
testcase_20 | AC | 92 ms
43,136 KB |
testcase_21 | AC | 97 ms
43,008 KB |
testcase_22 | RE | - |
testcase_23 | AC | 111 ms
43,132 KB |
testcase_24 | AC | 92 ms
43,136 KB |
testcase_25 | RE | - |
testcase_26 | AC | 91 ms
43,136 KB |
testcase_27 | RE | - |
testcase_28 | AC | 92 ms
43,008 KB |
testcase_29 | AC | 91 ms
43,136 KB |
testcase_30 | AC | 92 ms
43,008 KB |
testcase_31 | AC | 93 ms
43,136 KB |
testcase_32 | AC | 92 ms
43,124 KB |
testcase_33 | AC | 91 ms
43,136 KB |
testcase_34 | AC | 91 ms
43,120 KB |
testcase_35 | AC | 91 ms
43,008 KB |
testcase_36 | AC | 91 ms
42,980 KB |
testcase_37 | AC | 92 ms
43,136 KB |
testcase_38 | AC | 92 ms
43,008 KB |
testcase_39 | RE | - |
testcase_40 | AC | 92 ms
43,008 KB |
testcase_41 | AC | 91 ms
43,008 KB |
testcase_42 | RE | - |
testcase_43 | AC | 92 ms
43,136 KB |
testcase_44 | AC | 92 ms
43,008 KB |
testcase_45 | AC | 92 ms
43,008 KB |
testcase_46 | AC | 93 ms
43,136 KB |
testcase_47 | AC | 91 ms
43,112 KB |
testcase_48 | RE | - |
testcase_49 | AC | 91 ms
43,136 KB |
testcase_50 | AC | 93 ms
43,008 KB |
testcase_51 | AC | 91 ms
43,008 KB |
testcase_52 | AC | 92 ms
43,136 KB |
testcase_53 | AC | 95 ms
43,136 KB |
testcase_54 | AC | 90 ms
43,136 KB |
testcase_55 | AC | 91 ms
43,136 KB |
testcase_56 | RE | - |
ソースコード
//* #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") //*/ #include <bits/stdc++.h> // #include <atcoder/all> // #include <atcoder/convolution> using namespace std; // using namespace atcoder; // #define _GLIBCXX_DEBUG #define DEBUG(x) cerr << #x << ": " << x << endl; #define DEBUG_VEC(v) \ cerr << #v << ":"; \ for (int iiiiiiii = 0; iiiiiiii < v.size(); iiiiiiii++) \ cerr << " " << v[iiiiiiii]; \ cerr << endl; #define DEBUG_MAT(v) \ cerr << #v << endl; \ for (int iv = 0; iv < v.size(); iv++) { \ for (int jv = 0; jv < v[iv].size(); jv++) { \ cerr << v[iv][jv] << " "; \ } \ cerr << endl; \ } typedef long long ll; // #define int ll #define vi vector<int> #define vl vector<ll> #define vii vector<vector<int>> #define vll vector<vector<ll>> #define vs vector<string> #define pii pair<int, int> #define pis pair<int, string> #define psi pair<string, int> #define pll pair<ll, ll> template <class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first + t.first, s.second + t.second); } template <class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); } template <class S, class T> ostream &operator<<(ostream &os, pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; } #define X first #define Y second #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep1(i, n) for (int i = 1; i <= (int)(n); i++) #define rrep(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rrep1(i, n) for (int i = (int)(n); i > 0; i--) #define REP(i, a, b) for (int i = a; i < b; i++) #define in(x, a, b) (a <= x && x < b) #define all(c) c.begin(), c.end() void YES(bool t = true) { cout << (t ? "YES" : "NO") << endl; } void Yes(bool t = true) { cout << (t ? "Yes" : "No") << endl; } void yes(bool t = true) { cout << (t ? "yes" : "no") << endl; } void NO(bool t = true) { cout << (t ? "NO" : "YES") << endl; } void No(bool t = true) { cout << (t ? "No" : "Yes") << endl; } void no(bool t = true) { cout << (t ? "no" : "yes") << endl; } template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } #define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end()); const ll inf = 1000000001; const ll INF = (ll)1e18 + 1; const long double pi = 3.1415926535897932384626433832795028841971L; int popcount(ll t) { return __builtin_popcountll(t); } // int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; // int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 }; vi dx = {0, 0, -1, 1}, dy = {-1, 1, 0, 0}; vi dx2 = {1, 1, 0, -1, -1, -1, 0, 1}, dy2 = {0, 1, 1, 1, 0, -1, -1, -1}; struct Setup_io { Setup_io() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout << fixed << setprecision(25); } } setup_io; // const ll MOD = 1000000007; const ll MOD = 998244353; // #define mp make_pair //#define endl '\n' #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint &operator*=(const mint &rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using namespace atcoder; using mint = modint998244353; const int MAXN = 2555555; vl fact(MAXN); vl rfact(MAXN); ll mod_pow(ll x, ll p, ll M = MOD) { if (p < 0) { x = mod_pow(x, M - 2, M); p = -p; } x %= M; ll a = 1; while (p) { if (p % 2) a = a * x % M; x = x * x % M; p /= 2; } return a; } ll mod_inverse(ll a, ll M = MOD) { return mod_pow(a, M - 2, M); } void set_fact(ll n, ll M = MOD) { fact[0] = 1; for (ll i = 1; i <= n; i++) { fact[i] = i * fact[i - 1] % M; } rfact[n] = mod_inverse(fact[n], M); for (ll i = n - 1; i >= 0; i--) { rfact[i] = (i + 1) * rfact[i + 1] % M; } } //http://drken1215.hatenablog.com/entry/2018/06/08/210000 //n���傫��fact���v�Z�ł��Ȃ��Ƃ��̂ق��̌v�Z���@�ɂ��ď����Ă��� ll nCr(ll n, ll r, ll M = MOD) { if (r > n) return 0; assert(fact[2] == 2); ll ret = fact[n]; if (rfact[r] == 0) { rfact[r] = mod_inverse(fact[r], M); } ret = (ret * rfact[r]) % M; if (rfact[n - r] == 0) { rfact[n - r] = mod_inverse(fact[n - r], M); } ret = (ret * rfact[n - r]) % M; return ret; } ll nHr(ll n, ll r) { return nCr(n + r - 1, r); } ll n, m; pll get_ij(ll x, ll y) { if ((y + n) % 2 != 0) { return pll(INF, INF); } ll i = (n + y) / 2; if (i < 0) { return pll(INF, INF); } if ((x + n) % 2 != 0) { return pll(INF, INF); } ll j = (n + x) / 2; if (j < 0) { return pll(INF, INF); } return pll(i, j); } signed main() { set_fact(2333333); cin >> n >> m; assert(m != 0); mint sum = 0; for (ll a = 1; a * a <= abs(m); a++) { if (abs(m) % a != 0) { continue; } ll b = m / a; // DEBUG(pll(a, b)); { auto [i, j] = get_ij(a, b); if (i != INF) { mint temp = nCr(n, i) * nCr(n, j); sum += temp; } } if (abs(a) != abs(b)) { auto [i, j] = get_ij(b, a); if (i != INF) { mint temp = nCr(n, i) * nCr(n, j); sum += temp; } } { auto [i, j] = get_ij(-a, -b); if (i != INF) { mint temp = nCr(n, i) * nCr(n, j); sum += temp; } } if (abs(a) != abs(b)) { auto [i, j] = get_ij(-b, -a); if (i != INF) { mint temp = nCr(n, i) * nCr(n, j); sum += temp; } } } mint inv4 = mint(1) / mint(4); sum *= mod_pow(inv4.val(), n); cout << sum.val() << endl; }