結果

問題 No.2507 Yet Another Subgraph Counting
ユーザー suisensuisen
提出日時 2023-08-21 04:17:36
言語 PyPy3
(7.3.15)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 4,556 bytes
コンパイル時間 746 ms
コンパイル使用メモリ 86,932 KB
実行使用メモリ 132,628 KB
最終ジャッジ日時 2023-08-31 23:08:24
合計ジャッジ時間 38,175 ms
ジャッジサーバーID
(参考情報)
judge13 / judge15
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 188 ms
82,452 KB
testcase_01 AC 190 ms
82,656 KB
testcase_02 AC 191 ms
82,200 KB
testcase_03 AC 179 ms
81,784 KB
testcase_04 AC 172 ms
80,944 KB
testcase_05 AC 362 ms
84,536 KB
testcase_06 AC 170 ms
81,156 KB
testcase_07 AC 190 ms
82,460 KB
testcase_08 AC 219 ms
83,116 KB
testcase_09 AC 169 ms
81,008 KB
testcase_10 AC 217 ms
83,008 KB
testcase_11 AC 357 ms
84,844 KB
testcase_12 AC 221 ms
83,252 KB
testcase_13 AC 218 ms
83,192 KB
testcase_14 AC 364 ms
85,372 KB
testcase_15 AC 167 ms
81,132 KB
testcase_16 AC 171 ms
81,012 KB
testcase_17 AC 356 ms
85,004 KB
testcase_18 AC 167 ms
81,264 KB
testcase_19 AC 320 ms
84,540 KB
testcase_20 AC 167 ms
81,232 KB
testcase_21 AC 185 ms
82,684 KB
testcase_22 AC 215 ms
82,792 KB
testcase_23 AC 367 ms
84,840 KB
testcase_24 AC 268 ms
84,016 KB
testcase_25 AC 480 ms
86,272 KB
testcase_26 AC 839 ms
95,216 KB
testcase_27 AC 362 ms
84,864 KB
testcase_28 AC 477 ms
86,616 KB
testcase_29 AC 218 ms
82,976 KB
testcase_30 AC 849 ms
95,624 KB
testcase_31 AC 1,949 ms
132,628 KB
testcase_32 AC 1,970 ms
131,756 KB
testcase_33 AC 355 ms
84,996 KB
testcase_34 AC 312 ms
84,780 KB
testcase_35 AC 351 ms
84,552 KB
testcase_36 AC 267 ms
84,224 KB
testcase_37 AC 1,999 ms
125,968 KB
testcase_38 TLE -
testcase_39 AC 1,977 ms
127,500 KB
testcase_40 TLE -
testcase_41 AC 1,979 ms
125,876 KB
testcase_42 AC 1,980 ms
127,348 KB
testcase_43 AC 811 ms
94,832 KB
testcase_44 AC 1,944 ms
132,244 KB
testcase_45 AC 350 ms
84,716 KB
testcase_46 AC 348 ms
84,412 KB
testcase_47 AC 1,969 ms
132,072 KB
testcase_48 AC 260 ms
83,976 KB
testcase_49 AC 1,981 ms
131,232 KB
testcase_50 AC 309 ms
84,712 KB
testcase_51 AC 828 ms
94,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from typing import List

N_MAX = 13
popcount = [0] * (1 << N_MAX)
for S in range(1, 1 << N_MAX):
    popcount[S] = popcount[S & (S - 1)] + 1

def addeq_poly(f: List[int], g: List[int]):
    """
    f += g
    """
    for i, gi in enumerate(g):
        f[i] += gi

def subeq_poly(f: List[int], g: List[int]):
    """
    f -= g
    """
    for i, gi in enumerate(g):
        f[i] -= gi

def subset_zeta(f: List[int], n: int):
    """
    Inplace conversion from f to ζf. ζf is defined as follows:
        (ζf)(S) = Σ[T⊆S] f(T)
    """
    block = 1
    while block < 1 << n:
        offset = 0
        while offset < 1 << n:
            for p in range(offset, offset + block):
                f[p + block] += f[p]
            offset += 2 * block
        block <<= 1

def subset_zeta_poly(f: List[List[int]], n: int):
    """
    Inplace conversion from f to ζf. ζf is defined as follows:
        (ζf)(S) = Σ[T⊆S] f(T)
    """
    block = 1
    while block < 1 << n:
        offset = 0
        while offset < 1 << n:
            for p in range(offset, offset + block):
                addeq_poly(f[p + block], f[p])
            offset += 2 * block
        block <<= 1

def subset_mobius_poly(f: List[List[int]], n: int):
    """
    Inplace conversion from f to μf. μf is defined as follows:
        (μf)(S) = Σ[T⊆S] (-1)^(|S/T|) f(T)
    """
    block = 1
    while block < 1 << n:
        offset = 0
        while offset < 1 << n:
            for p in range(offset, offset + block):
                subeq_poly(f[p + block], f[p])
            offset += 2 * block
        block <<= 1

def mul_poly(f: List[int], g: List[int]):
    """
    Returns h = fg mod x^n, where f, g are polynomials with degree n-1 defined as follows:
        f(x) = Σ_i f[i] x^i,
        g(x) = Σ_i g[i] x^i.
    """
    n = len(f)
    h = [0] * n
    for i in range(n):
        for j in range(n - i):
            h[i + j] += f[i] * g[j]

    return h

def ranked(f: List[int], n: int):
    """
    Add rank
    """
    return [[(i == popcount[S]) * f[S] for i in range(n + 1)] for S in range(1 << n)]

def deranked(rf: List[List[int]], n: int):
    """
    Remove rank
    """
    return [rf[S][popcount[S]] for S in range(1 << n)]

def exp(f: List[int], n: int):
    """
    Subset exp of Σ[S⊆{0,1,...,n-1}] f(S)
    """
    assert f[0] == 0
    rf = ranked([1], 0)
    for i in range(n):
        rg = ranked(f[1 << i: 1 << (i + 1)], i)
        subset_zeta_poly(rg, i)
        for S in range(1 << i):
            rf[S].append(0)
            rg[S].insert(0, 1)
            rh = mul_poly(rf[S], rg[S])
            rf.append(rh)
    subset_mobius_poly(rf, n)
    return deranked(rf, n)

def bit_deposit(src, mask):
    dst = 0
    j = 0
    for i in range(N_MAX):
        if (mask >> i) & 1:
            dst |= ((src >> j) & 1) << i
            j += 1
    return dst

def bit_extract(src, mask):
    dst = 0
    j = 0
    for i in range(N_MAX):
        if (mask >> i) & 1:
            dst |= ((src >> i) & 1) << j
            j += 1
    return dst

n, m = map(int, input().split())

edges = []
for _ in range(m):
    u, v = map(int, input().split())
    u -= 1
    v -= 1
    edges.append((u, v))

# E[S] = # of edges connecting vertices in S
E = [0] * (1 << n)
for u, v in edges:
    E[(1 << u) | (1 << v)] += 1
subset_zeta(E, n)

cycle = [0] * (1 << n)
adj = [[] for _ in range(n)]
for u, v in edges:
    adj[u].append(v)
    adj[v].append(u)

cycle_dp = [[0] * n for _ in range(1 << n)]
for v in range(n):
    cycle_dp[1 << v][v] = 1
for s in range(1, 1 << n):
    start = 0
    while not ((s >> start) & 1):
        start += 1
    for cur in range(n):
        if cycle_dp[s][cur] == 0:
            continue
        for nxt in adj[cur]:
            if start == nxt:
                cycle[s] += cycle_dp[s][cur]
            elif start < nxt and not ((s >> nxt) & 1):
                cycle_dp[s | (1 << nxt)][nxt] += cycle_dp[s][cur]

for s in range(1, 1 << n):
    if popcount[s] == 1:
        cycle[s] = 1
    elif popcount[s] == 2:
        cycle[s] = 0
    else:
        cycle[s] //= 2

f = [0]
for v in range(n):
    f += [0] * (1 << v)
    for X in range(1 << v, 1 << (v + 1)):
        mask = ((1 << (v + 1)) - 1) ^ X
        k = popcount[mask]

        g = [0] * (1 << k)
        for T in range(1 << k):
            S = bit_deposit(T, mask)
            g[T] = f[S] * (E[S | X] - E[S] - E[X])

        exp_g = exp(g, k)
        for T in range(1 << k):
            S = bit_deposit(T, mask)
            f[S | X] += cycle[X] * exp_g[T]

print(exp(f, n)[-1])
0