結果
問題 | No.2577 Simple Permutation Guess |
ユーザー | Nikkuniku029 |
提出日時 | 2023-12-05 18:31:24 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 5,692 bytes |
コンパイル時間 | 573 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 97,136 KB |
平均クエリ数 | 251.95 |
最終ジャッジ日時 | 2024-09-27 00:20:03 |
合計ジャッジ時間 | 31,256 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 96 ms
84,576 KB |
testcase_01 | AC | 470 ms
96,296 KB |
testcase_02 | AC | 260 ms
95,868 KB |
testcase_03 | AC | 93 ms
85,344 KB |
testcase_04 | AC | 291 ms
96,184 KB |
testcase_05 | AC | 315 ms
96,132 KB |
testcase_06 | AC | 539 ms
96,092 KB |
testcase_07 | AC | 519 ms
96,780 KB |
testcase_08 | AC | 515 ms
96,416 KB |
testcase_09 | AC | 536 ms
96,260 KB |
testcase_10 | AC | 538 ms
96,800 KB |
testcase_11 | AC | 94 ms
85,088 KB |
testcase_12 | AC | 94 ms
84,320 KB |
testcase_13 | AC | 129 ms
95,200 KB |
testcase_14 | AC | 107 ms
89,952 KB |
testcase_15 | AC | 94 ms
85,216 KB |
testcase_16 | AC | 88 ms
84,320 KB |
testcase_17 | AC | 90 ms
84,448 KB |
testcase_18 | AC | 92 ms
83,808 KB |
testcase_19 | AC | 89 ms
84,448 KB |
testcase_20 | AC | 90 ms
84,320 KB |
testcase_21 | AC | 91 ms
84,448 KB |
testcase_22 | AC | 94 ms
84,568 KB |
testcase_23 | AC | 91 ms
84,312 KB |
testcase_24 | RE | - |
testcase_25 | AC | 91 ms
84,184 KB |
testcase_26 | AC | 93 ms
84,568 KB |
testcase_27 | AC | 90 ms
84,824 KB |
testcase_28 | AC | 91 ms
84,312 KB |
testcase_29 | AC | 90 ms
84,184 KB |
testcase_30 | AC | 93 ms
84,440 KB |
testcase_31 | AC | 91 ms
84,448 KB |
testcase_32 | AC | 91 ms
84,832 KB |
testcase_33 | AC | 91 ms
84,576 KB |
testcase_34 | AC | 90 ms
84,864 KB |
testcase_35 | AC | 91 ms
84,832 KB |
testcase_36 | AC | 89 ms
83,936 KB |
testcase_37 | AC | 91 ms
84,192 KB |
testcase_38 | AC | 89 ms
83,928 KB |
testcase_39 | AC | 91 ms
84,560 KB |
testcase_40 | AC | 91 ms
84,064 KB |
testcase_41 | AC | 90 ms
84,448 KB |
testcase_42 | AC | 93 ms
84,608 KB |
testcase_43 | AC | 89 ms
84,232 KB |
testcase_44 | AC | 87 ms
84,704 KB |
testcase_45 | AC | 90 ms
84,424 KB |
testcase_46 | AC | 89 ms
84,192 KB |
testcase_47 | AC | 93 ms
84,320 KB |
testcase_48 | AC | 92 ms
84,184 KB |
testcase_49 | AC | 93 ms
84,568 KB |
testcase_50 | AC | 93 ms
84,600 KB |
testcase_51 | AC | 91 ms
84,184 KB |
testcase_52 | AC | 90 ms
84,056 KB |
testcase_53 | AC | 91 ms
83,928 KB |
testcase_54 | AC | 91 ms
84,720 KB |
testcase_55 | AC | 92 ms
84,312 KB |
testcase_56 | AC | 89 ms
84,184 KB |
testcase_57 | AC | 90 ms
84,440 KB |
testcase_58 | AC | 92 ms
84,344 KB |
testcase_59 | AC | 93 ms
84,568 KB |
testcase_60 | AC | 89 ms
84,440 KB |
testcase_61 | AC | 90 ms
83,928 KB |
testcase_62 | AC | 90 ms
84,512 KB |
testcase_63 | AC | 93 ms
84,472 KB |
testcase_64 | AC | 92 ms
84,824 KB |
testcase_65 | AC | 92 ms
84,568 KB |
testcase_66 | AC | 90 ms
84,440 KB |
testcase_67 | AC | 90 ms
83,928 KB |
testcase_68 | AC | 90 ms
84,568 KB |
testcase_69 | AC | 92 ms
84,824 KB |
testcase_70 | AC | 93 ms
84,184 KB |
testcase_71 | AC | 92 ms
84,568 KB |
testcase_72 | AC | 91 ms
84,696 KB |
testcase_73 | AC | 89 ms
84,064 KB |
testcase_74 | AC | 125 ms
94,944 KB |
testcase_75 | AC | 125 ms
95,328 KB |
testcase_76 | AC | 126 ms
95,200 KB |
testcase_77 | AC | 127 ms
94,688 KB |
testcase_78 | AC | 125 ms
95,072 KB |
testcase_79 | AC | 127 ms
95,328 KB |
testcase_80 | AC | 129 ms
94,816 KB |
testcase_81 | AC | 126 ms
95,200 KB |
testcase_82 | AC | 131 ms
95,200 KB |
testcase_83 | AC | 130 ms
95,072 KB |
testcase_84 | AC | 134 ms
95,336 KB |
testcase_85 | AC | 130 ms
95,200 KB |
testcase_86 | AC | 133 ms
95,200 KB |
testcase_87 | AC | 133 ms
94,920 KB |
testcase_88 | AC | 135 ms
95,168 KB |
testcase_89 | AC | 134 ms
95,304 KB |
testcase_90 | AC | 131 ms
94,664 KB |
testcase_91 | AC | 130 ms
94,920 KB |
testcase_92 | AC | 507 ms
96,752 KB |
testcase_93 | AC | 450 ms
96,848 KB |
testcase_94 | AC | 406 ms
96,404 KB |
testcase_95 | AC | 497 ms
96,796 KB |
testcase_96 | AC | 529 ms
96,788 KB |
testcase_97 | AC | 499 ms
96,952 KB |
testcase_98 | AC | 482 ms
96,472 KB |
testcase_99 | AC | 494 ms
96,600 KB |
testcase_100 | AC | 443 ms
96,496 KB |
testcase_101 | AC | 496 ms
97,136 KB |
evil_1_rnd_1.txt | AC | 854 ms
97,440 KB |
evil_1_rnd_2.txt | AC | 842 ms
96,948 KB |
evil_2_big_1.txt | AC | 991 ms
97,296 KB |
evil_2_big_2.txt | AC | 1,001 ms
98,236 KB |
evil_2_big_3.txt | AC | 993 ms
97,364 KB |
evil_3_sorted_1.txt | AC | 560 ms
96,880 KB |
evil_4_sorted_rev_1.txt | AC | 531 ms
97,708 KB |
evil_4_sorted_rev_2.txt | AC | 669 ms
96,592 KB |
evil_400_sorted.txt | AC | 812 ms
97,348 KB |
evil_400_sorted_rev.txt | AC | 994 ms
97,484 KB |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar("T") class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = self.size = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) bucket_size = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [ a[n * i // bucket_size : n * (i + 1) // bucket_size] for i in range(bucket_size) ] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b : b + 1] = [a[:mid], a[mid:]] return True def _pop(self, a: List[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans N = int(input()) ans = [] ok = set() for i in range(N): s = SortedSet() for j in range(1, N + 1): if j in ok: continue s.add(j) l = 0 r = len(s) while r - l > 1: mid = (l + r) // 2 k = s[mid] Q = ans + [k] for m in range(1, N + 1): if m in s and m != k: Q.append(m) print("?", *Q, flush=True) ret = int(input()) if ret == 1: l = mid else: r = mid ans.append(s[l]) ok.add(s[l]) s.discard(s[l]) print("!", *ans, flush=True)