結果
| 問題 |
No.2578 Jewelry Store
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-12-06 00:50:53 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,322 bytes |
| コンパイル時間 | 405 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 159,152 KB |
| 最終ジャッジ日時 | 2024-09-27 00:47:54 |
| 合計ジャッジ時間 | 24,121 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 47 WA * 7 |
ソースコード
def isPrimeMR(n):
if n==1:
return 0
d = n - 1
d = d // (d & -d)
L = [2, 3, 5, 7, 11, 13, 17]
if n in L:
return 1
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = (y * y) % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
from math import gcd
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i*i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += 1 + i % 2
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
import sys
from itertools import permutations
from heapq import heappop,heappush
from collections import deque
import random
import bisect
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
K = 17
popcount = [0] * (1<<K)
for i in range(K):
for S in range(1<<K):
if S >> i & 1:
popcount[S] ^= 1
mod = 998244353
T,M = mi()
pf = primeFactor(M)
"""
M_div = [1]
for p in pf:
e = pf[p]
nxt_M_div = []
for a in M_div:
t = 1
for i in range(e+1):
nxt_M_div.append(a * t)
t *= p
M_div = nxt_M_div
M_div.sort()
"""
M_prime = [pow(p,pf[p]) for p in pf]
M_n = len(M_prime)
def solve1(N,B,C,D,A):
dic = {}
w = B
for a in A:
if M % a:
w = (C * w + D) % mod
continue
if a not in dic:
dic[a] = 1
dic[a] *= w + 1
dic[a] %= mod
w = (C * w + D) % mod
for p in pf:
for d in M_div:
if d not in dic:
continue
if M % (d*p):
continue
if d*p not in dic:
dic[d*p] = 1
dic[d*p] *= dic[d]
dic[d*p] %= mod
for d in dic:
dic[d] = (dic[d] - 1 ) % mod
for p in pf:
for d in M_div[::-1]:
if d % p:
continue
if d // p not in dic:
continue
dic[d] -= dic[d//p]
dic[d] %= mod
if M not in dic:
return 0
return dic[M]
def solve2(N,B,C,D,A):
dp = [1] * (1<<M_n)
w = B
for a in A:
if M % a:
w = (C * w + D) % mod
continue
S = 0
for i in range(M_n):
if a % M_prime[i] == 0:
S ^= 1<<i
dp[S] *= 1 + w
dp[S] %= mod
w = (C * w + D) % mod
for i in range(M_n):
dp[2**i] *= -1
dp[2**i] %= mod
for i in range(M_n):
t = 1<<i
for S in range(1<<M_n):
if S>>i & 1 == 0:
dp[S^t] *= dp[S]
dp[S^t] %= mod
res = sum(dp) % mod
if M_n & 1:
res = mod-res % mod
return res
for _ in range(T):
N,B,C,D = mi()
A = li()
if M!=1:
print(solve2(N,B,C,D,A))
else:
print((solve2(N,B,C,D,A)-1) % mod)
#print(solve1(N,B,C,D,A))