結果

問題 No.2640 traO Stamps
ユーザー kaikeykaikey
提出日時 2024-02-19 21:47:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,996 bytes
コンパイル時間 2,383 ms
コンパイル使用メモリ 210,012 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-09-29 01:42:36
合計ジャッジ時間 6,015 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 1 ms
6,816 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 AC 52 ms
6,816 KB
testcase_27 AC 52 ms
6,816 KB
testcase_28 AC 51 ms
6,820 KB
testcase_29 AC 55 ms
6,820 KB
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
    for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
    return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
    for (T& in : v) is >> in;
    return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
    F f;
    rec(F&& f_) : f(std::forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&... args) const {
        return f(*this, std::forward<Args>(args)...);
    }
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e13;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
    lint from, to;
    lint cost;
    Edge() {

    }
    Edge(lint u, lint v, lint c) {
        cost = c;
        from = u;
        to = v;
    }
    bool operator<(const Edge& e) const {
        return cost < e.cost;
    }
};
struct WeightedEdge {
    lint to;
    lint cost;
    WeightedEdge(lint v, lint c) {
        to = v;
        cost = c;
    }
    bool operator<(const WeightedEdge& e) const {
        return cost < e.cost;
    }
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<lint, plint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<Edge, lint> pEd;
typedef pair<plint, V<plint>> vVl;
typedef pair<string, string> pstr;
typedef pair<ld, lint> pint;

struct BinaryIndexedTree {
    int n;
    int b;
    vector<lint> bit;
    BinaryIndexedTree(int n_) : n(n_ + 1), bit(n, 0) {}
    void add(int i, lint x) {
        for (int idx = i; idx < n; idx += (idx & -idx)) {
            bit[idx] += x;
        }
    }
    lint sum(int i) {
        lint s = 0;
        for (int idx = i; idx > 0; idx -= (idx & -idx)) {
            s += bit[idx];
        }
        return s;
    }
    int lower_bound(lint w) {
        if (w <= 0) {
            return 0;
        }
        else {
            int x = 0, r = 1;
            while (r < n) r = r << 1;
            for (int len = r; len > 0; len = len >> 1) {
                if (x + len < n && bit[x + len] < w) {
                    w -= bit[x + len];
                    x += len;
                }
            }
            return x;
        }
    }
    void show() {
        for (int i = 0; i < n - 1; i++) {
            cout << sum(i) - sum(i - 1) << " ";
        }
        cout << endk;
    }
};

struct ExtendBinaryIndexedTree {
public:
    ExtendBinaryIndexedTree(int _n) { init(_n); }
    //半開区間[l, r)
    void add(int l, int r, lint x) {
        add_sub(0, l, -x * (l - 1));
        add_sub(0, r, x * (r - 1));
        add_sub(1, l, x);
        add_sub(1, r, -x);
    }
    //区間[0, i)
    lint sum(int i) {
        return sum_sub(0, i) + sum_sub(1, i) * i;
    }

    void show() {
        for (int i = 0; i < n - 1; i++) {
            cout << sum(i + 1) - sum(i) << " ";
        }
        cout << endk;
    }
private:
    int n;
    vector<lint> bit[2];
    void init(int _n) {
        n = _n + 1;
        bit[0].assign(n, 0);
        bit[1].assign(n, 0);
    }
    void add_sub(int p, int i, lint x) {
        for (int idx = i; idx < n; idx += (idx & -idx)) {
            bit[p][idx] += x;
        }
    }
    lint sum_sub(int p, int i) {
        lint s = 0;
        for (int idx = i; idx > 0; idx -= (idx & -idx)) {
            s += bit[p][idx];
        }
        return s;
    }
};

void solve() {
    lint N, M, K;
    cin >> N >> M >> K;
    Vl pos(K + 1);
    cin >> pos;
    REP(i, K + 1) pos[i]--;

    VVl dist(N, Vl(N, INF));
    REP(i, M) {
        lint u, v, w;
        cin >> u >> v >> w; u--; v--;
        chmin(dist[u][v], w);
        chmin(dist[v][u], w);
    }

    Worshall_Floyd(dist);

    BinaryIndexedTree bit(K);
    REP(i, K) bit.add(i + 1, dist[pos[i]][pos[i + 1]]);

    lint Q;
    cin >> Q;
    REP(i, Q) {
        lint t, x, y;
        cin >> t >> x >> y;
        if (t == 1) {
            y--;
            if (x != 0) {
                lint prv = pos[x];
                lint v1 = dist[pos[x]][pos[x - 1]];
                bit.add(x, -v1);
                pos[x] = y;
                lint v2 = dist[pos[x]][pos[x - 1]];
                bit.add(x, v2);
                pos[x] = prv;
            }
            if (x != K) {
                lint prv = pos[x];
                lint v1 = dist[pos[x + 1]][pos[x]];
                bit.add(x + 1, -v1);
                pos[x] = y;
                lint v2 = dist[pos[x + 1]][pos[x]];
                bit.add(x + 1, v2);
                pos[x] = prv;
            }
            pos[x] = y;
        }
        else {
            cout << bit.sum(y) - bit.sum(x) << endk;
        }
    }
}

int main() {
    lint T = 1;
    //cin >> T;
    while (T--) solve();
}
0