結果

問題 No.2657 Falling Block Game
ユーザー nikoro256nikoro256
提出日時 2024-03-01 23:59:45
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 6,696 bytes
コンパイル時間 308 ms
コンパイル使用メモリ 82,120 KB
実行使用メモリ 171,304 KB
最終ジャッジ日時 2024-09-29 15:30:50
合計ジャッジ時間 23,045 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 62 ms
68,432 KB
testcase_01 AC 62 ms
68,788 KB
testcase_02 AC 66 ms
69,204 KB
testcase_03 AC 64 ms
68,616 KB
testcase_04 AC 362 ms
93,840 KB
testcase_05 AC 942 ms
150,524 KB
testcase_06 AC 307 ms
105,140 KB
testcase_07 AC 599 ms
171,304 KB
testcase_08 AC 494 ms
88,492 KB
testcase_09 AC 657 ms
96,856 KB
testcase_10 AC 373 ms
112,888 KB
testcase_11 AC 404 ms
114,388 KB
testcase_12 AC 366 ms
112,596 KB
testcase_13 AC 409 ms
115,592 KB
testcase_14 AC 393 ms
113,344 KB
testcase_15 AC 401 ms
116,024 KB
testcase_16 AC 406 ms
113,988 KB
testcase_17 AC 397 ms
113,688 KB
testcase_18 AC 393 ms
113,456 KB
testcase_19 AC 398 ms
115,784 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 AC 741 ms
99,288 KB
testcase_31 AC 704 ms
99,292 KB
testcase_32 AC 713 ms
99,664 KB
testcase_33 AC 672 ms
100,060 KB
testcase_34 AC 660 ms
99,156 KB
testcase_35 AC 784 ms
100,560 KB
testcase_36 AC 670 ms
99,164 KB
testcase_37 AC 708 ms
99,408 KB
testcase_38 AC 666 ms
99,664 KB
testcase_39 AC 696 ms
99,416 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional

T = TypeVar("T")


class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a: Optional[List[T]] = None) -> None:
        "Evenly divide `a` into buckets."
        if a is None:
            a = list(self)
        size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [
            a[size * i // bucket_size : size * (i + 1) // bucket_size]
            for i in range(bucket_size)
        ]

    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        self.size = len(a)
        if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
            a = sorted(a)
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i:
                yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i):
                yield j

    def __eq__(self, other) -> bool:
        return list(self) == list(other)

    def __len__(self) -> int:
        return self.size

    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)

    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x: T) -> Tuple[List[T], int]:
        "Find the bucket and position which x should be inserted. self must not be empty."
        for a in self.a:
            if x <= a[-1]:
                break
        return (a, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0:
            return False
        a, i = self._position(x)
        return i != len(a) and a[i] == x

    def count(self, x: T) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x: T) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a, i = self._position(x)
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()

    def _pop(self, a: List[T], i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a:
            self._build()
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0:
            return False
        a, i = self._position(x)
        if i == len(a) or a[i] != x:
            return False
        self._pop(a, i)
        return True

    def lt(self, x: T) -> Optional[T]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Optional[T]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Optional[T]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Optional[T]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]

    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0:
                    return a[i]
        else:
            for a in self.a:
                if i < len(a):
                    return a[i]
                i -= len(a)
        raise IndexError

    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0:
                    return self._pop(a, i)
        else:
            for a in self.a:
                if i < len(a):
                    return self._pop(a, i)
                i -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans


from collections import deque

H, W = map(int, input().split())
S = []
for _ in range(H):
    S.append(input())
dp = [[10**9] * W for _ in range(H)]
for j in range(W):
    dp[-1][j] = 0
for i in range(H - 2, -1, -1):
    dp_d = [10**9] * W
    for j in range(W):
        if S[i + 1][j] == "." and S[i][j] == ".":
            dp_d[j] = dp[i + 1][j]
    numbers = SortedMultiset()
    dat = [[] for _ in range(W)]
    for j in range(W):
        if S[i][j] == "#":
            numbers = SortedMultiset()
            continue
        if dp_d[j] != 10**9 and j + dp_d[j] < W:
            dat[j + dp_d[j]].append(dp_d[j])
            numbers.add(dp_d[j])
        if len(numbers) > 0:
            dp[i][j] = min(dp[i][j], numbers[0])
        for d in dat[j]:
            numbers.discard(d)
    numbers = SortedMultiset()
    dat = [[] for _ in range(W)]
    for j in range(W - 1, -1, -1):
        if S[i][j] == "#":
            numbers = SortedMultiset()
            continue
        if dp_d[j] != 10**9 and j - dp_d[j] >= 0:
            dat[j - dp_d[j]].append(dp_d[j])
            numbers.add(dp_d[j])
        if len(numbers) > 0:
            dp[i][j] = min(dp[i][j], numbers[0])
        for d in dat[j]:
            numbers.discard(d)
    left = 10**9
    for j in range(W):
        if S[i][j] == "#":
            left = 10**9
            continue
        left += 1
        left = min(left, dp[i][j])
        dp[i][j] = min(dp[i][j], left)
    left = 10**9
    for j in range(W - 1, -1, -1):
        if S[i][j] == "#":
            left = 10**9
            continue
        left += 1
        left = min(left, dp[i][j])
        dp[i][j] = min(dp[i][j], left)
for i in range(W):
    print(dp[0][i])
0