結果
| 問題 |
No.2665 Minimize Inversions of Deque
|
| コンテスト | |
| ユーザー |
k1suxu
|
| 提出日時 | 2024-03-08 22:07:23 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,638 bytes |
| コンパイル時間 | 3,465 ms |
| コンパイル使用メモリ | 264,072 KB |
| 実行使用メモリ | 17,216 KB |
| 最終ジャッジ日時 | 2024-09-29 19:42:00 |
| 合計ジャッジ時間 | 11,099 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 WA * 34 |
ソースコード
// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>
template<typename T>
bool chmax(T &a, const T b) {if(a<b) {a=b; return true;} else {return false;}}
template<typename T>
bool chmin(T &a, const T b) {if(a>b) {a=b; return true;} else {return false;}}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
#define int long long
struct fenwick_tree {
int n, sz;
vector<int> dat;
function<int(int, int)> f = [](int x, int y) {return x + y;};
fenwick_tree(int n_) : dat(4*n_, 0), sz(n_) {
int x = 1;
while(x < n_) x *= 2;
n = x;
}
void add(int i, int x) {
i += n - 1;
dat[i] += x;
while(i > 0) {
i = (i - 1) / 2;
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
}
void insert(int i) {
return add(i, 1);
}
void erase(int i) {
return add(i, -1);
}
void update(int i, int x) {
i += n - 1;
dat[i] = x;
while(i > 0) {
i = (i - 1) / 2;
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
}
int get_sum(int a, int b) {
return get_sum_sub(a, b, 0, 0, n);
}
int get_sum_sub(int a, int b, int k, int l, int r) {
if(r <= a || b <= l) {
return 0;
}else if(a <= l && r <= b) {
return dat[k];
}else {
int vl = get_sum_sub(a, b, k * 2 + 1, l, (l + r) / 2);
int vr = get_sum_sub(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
}
int get(int i) {
return dat[i + n - 1];
}
inline void print() {
cout << "{ ";
for(int i = 0; i < sz; i++) {
cout << dat[i + n - 1] << " ";
}
cout << "}\n";
}
};
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n((int)v.size()) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
using S = int;
S op(S x, S y) {
return x + y;
}
S e() {
return 0;
}
template <typename T>
vector<T> compress(vector<T> &X) {
vector<T> vals = X;
sort(vals.begin(), vals.end());
vals.erase(unique(vals.begin(), vals.end()), vals.end());
for (int i = 0; i < (int)X.size(); i++) {
X[i] = lower_bound(vals.begin(), vals.end(), X[i]) - vals.begin();
}
return vals;
}
int the_number_of_inversions(vector<long long> a) {
int n = (int)a.size();
compress<long long>(a);
segtree<S, op, e> seg(n);
int inversion = 0;
FOR(n) {
inversion += seg.prod(a[i]+1, n);
seg.set(a[i], seg.get(a[i]) + 1);
}
return inversion;
}
void solve() {
int n;
cin >> n;
vi p(n);
FOR(n) {
cin >> p[i];
--p[i];
}
int inv = the_number_of_inversions(p);
fenwick_tree fw(n);
FOR(n) fw.insert(p[i]);
vi pref, suff;
for(int i = n-1; i >= 0; i--) {
fw.erase(p[i]);
if(fw.get_sum(0, p[i])-fw.get_sum(p[i], n) < 0 || (fw.get_sum(0, p[i])-fw.get_sum(p[i], n) == 0 && p[i] < p[0])) {
pref.push_back(p[i]);
inv += fw.get_sum(0, p[i])-fw.get_sum(p[i], n);
}else {
suff.push_back(p[i]);
}
}
reverse(all(suff));
vi ans;
for(auto e : pref) ans.push_back(e);
for(auto e : suff) ans.push_back(e);
cout << inv << endl;
for(auto e : ans) cout << e+1 << " "; cout << endl;
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int t;
cin >> t;
while(t--) solve();
return 0;
}
k1suxu