結果
| 問題 |
No.2682 Visible Divisible
|
| コンテスト | |
| ユーザー |
ikoma
|
| 提出日時 | 2024-03-20 22:02:32 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,742 bytes |
| コンパイル時間 | 17,170 ms |
| コンパイル使用メモリ | 401,284 KB |
| 実行使用メモリ | 13,632 KB |
| 最終ジャッジ日時 | 2024-09-30 07:53:24 |
| 合計ジャッジ時間 | 23,123 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 5 TLE * 3 -- * 6 |
ソースコード
#![allow(unused_imports, dead_code, unused_macros, unused_variables, non_snake_case, unused_parens)]
use std::cmp::*;
use std::mem::swap;
use std::collections::*;
const MOD:u64 = 1_000_000_007;
const INF:i64 = 0x7fff_ffff_ffff_ffff;
macro_rules! min {($a:expr $(,)*) => {{$a}};($a:expr, $b:expr $(,)*) => {{std::cmp::min($a, $b)}};($a:expr, $($rest:expr),+ $(,)*) => {{std::cmp::min($a, min!($($rest),+))}};}
macro_rules! max {($a:expr $(,)*) => {{$a}};($a:expr, $b:expr $(,)*) => {{std::cmp::max($a, $b)}};($a:expr, $($rest:expr),+ $(,)*) => {{std::cmp::max($a, max!($($rest),+))}};}
macro_rules! mulvec {($x:expr; $s:expr) => {vec![$x; $s]};($x:expr; $s0:expr; $( $s:expr );+) => {mulvec![vec![$x; $s0]; $( $s );+ ]};}
fn solve() {
input! {
n:usize,
k:u64,
A:[u64;n],
}
let k_fac = Factorization::prime_factor(k);
let mut kf = vec![];
for (k,v) in k_fac {
kf.push(k*v as u64);
}
for a in A {
let mut tmp = vec![];
for x in kf {
if a % x != 0 {
tmp.push(x);
}
}
kf = tmp;
}
println!("{}", if kf.is_empty() {"Yes"}else{"No"});
}
use std::ops::*;
pub fn gcd<T>(mut a: T, mut b: T) -> T
where T: Copy + Default + PartialOrd + Rem<Output = T>
{
if a < b {
let tmp = a;
a = b;
b = tmp;
}
while b != T::default() {
let (ta,tb) = (b, a%b);
a = ta;
b = tb;
}
a
}
fn main() {
std::thread::Builder::new()
.stack_size(128 * 1024 * 1024)
.spawn(|| solve()).unwrap()
.join().unwrap();
}
mod _input {
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
let mut next = || { iter.next().unwrap() };
input_inner!{next, $($r)*}
};
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
}
pub struct Factorization;
impl Factorization {
fn gcd(mut a: u64, mut b: u64) -> u64 {
while b != 0 {
let tmp = b;
b = a%b;
a = tmp;
}
a
}
#[inline]
fn mul_mod(a:u64, b:u64, m:u64) -> u64 {
((a as u128 * b as u128) % m as u128) as u64
}
#[inline]
fn mul_add_mod(a:u64, b:u64, c:u64, m:u64) -> u64 {
((a as u128 * b as u128 + c as u128) % m as u128) as u64
}
fn pow_mod(x: u64, mut n: u64, m: u64) -> u64 {
if m == 1 {
return 0;
}
let mut r: u64 = 1;
let mut y: u64 = x.rem_euclid(m);
while n != 0 {
if (n & 1) > 0 {
r = Self::mul_mod(r, y, m);
}
y = Self::mul_mod(y, y, m);
n >>= 1;
}
r
}
fn is_prime_mr(n: u64) -> bool {
let mut d = n - 1;
d /= d & d.wrapping_neg();
let l = [2_u64, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37];
for &a in l.iter() {
let mut t = d;
let mut y = Self::pow_mod(a, t, n);
if y == 1 { continue; }
while y != n - 1 {
y = Self::mul_mod(y, y, n);
if y == 1 || t == n - 1 { return false; }
t <<= 1;
}
}
true
}
fn find_factor_rho(n: u64) -> u64 {
let m = 1 << ((n as f64).log2() as u64 / 8);
for c in 1..99 {
let f = |x: u64| -> u64 { Self::mul_add_mod(x, x, c, n) };
let mut y = 2;
let mut r = 1_u64;
let mut q = 1;
let mut g = 1;
let mut ys = 0;
let mut x = 0;
while g == 1 {
x = y;
for _ in 0..r { y = f(y); }
let mut k = 0;
while k < r && g == 1 {
ys = y;
for _ in 0..m.min(r - k) {
y = f(y);
q = Self::mul_mod(q, (x as i64 - y as i64).abs() as u64, n);
}
g = Self::gcd(q, n);
k += m;
}
r <<= 1;
}
if g == n {
g = 1;
while g == 1 {
ys = f(ys);
g = Self::gcd((x as i64 - ys as i64).abs() as u64, n);
}
}
if g < n {
if Self::is_prime_mr(g) { return g; }
else if Self::is_prime_mr(n / g) { return n / g; }
else { return Self::find_factor_rho(g); }
}
}
unreachable!()
}
pub fn prime_factor(mut n: u64) -> HashMap<u64, u32> {
let mut ret: HashMap<u64, u32> = HashMap::new();
let mut i = 2;
while i * i <= n {
let mut k = 0;
while n % i == 0 {
n /= i;
k += 1;
}
if k > 0 { ret.insert(i, k); }
i += if i % 2 == 0 { 1 } else { 2 };
if i == 101 && n >= (1 << 20) {
while n > 1 {
if Self::is_prime_mr(n) { ret.insert(n, 1); break; }
else {
let j = Self::find_factor_rho(n);
let mut k = 0;
while n % j == 0 {
n /= j;
k += 1;
}
ret.insert(j, k);
}
}
}
}
if n > 1 { ret.insert(n, 1); }
ret
}
}
ikoma