結果
問題 | No.2733 Just K-times TSP |
ユーザー | umimel |
提出日時 | 2024-04-24 22:56:52 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,729 bytes |
コンパイル時間 | 2,416 ms |
コンパイル使用メモリ | 188,332 KB |
実行使用メモリ | 193,580 KB |
最終ジャッジ日時 | 2024-11-07 08:12:24 |
合計ジャッジ時間 | 17,067 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 11 ms
21,120 KB |
testcase_01 | AC | 11 ms
15,744 KB |
testcase_02 | AC | 11 ms
15,616 KB |
testcase_03 | AC | 11 ms
15,488 KB |
testcase_04 | AC | 11 ms
15,616 KB |
testcase_05 | AC | 11 ms
15,488 KB |
testcase_06 | AC | 11 ms
15,488 KB |
testcase_07 | AC | 11 ms
15,616 KB |
testcase_08 | AC | 11 ms
15,616 KB |
testcase_09 | AC | 12 ms
15,616 KB |
testcase_10 | AC | 11 ms
15,616 KB |
testcase_11 | AC | 11 ms
15,488 KB |
testcase_12 | AC | 11 ms
15,488 KB |
testcase_13 | AC | 11 ms
15,488 KB |
testcase_14 | AC | 13 ms
16,000 KB |
testcase_15 | AC | 31 ms
17,664 KB |
testcase_16 | AC | 12 ms
15,616 KB |
testcase_17 | AC | 134 ms
26,112 KB |
testcase_18 | AC | 227 ms
32,896 KB |
testcase_19 | AC | 443 ms
42,880 KB |
testcase_20 | AC | 11 ms
15,488 KB |
testcase_21 | AC | 39 ms
19,072 KB |
testcase_22 | AC | 1,926 ms
138,880 KB |
testcase_23 | AC | 133 ms
26,240 KB |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | AC | 11 ms
15,616 KB |
testcase_27 | AC | 14 ms
16,000 KB |
testcase_28 | AC | 36 ms
17,920 KB |
testcase_29 | AC | 135 ms
24,704 KB |
testcase_30 | AC | 475 ms
44,416 KB |
testcase_31 | AC | 1,388 ms
90,368 KB |
testcase_32 | TLE | - |
testcase_33 | -- | - |
ソースコード
#include<bits/stdc++.h> using namespace std; using ll = long long; using pll = pair<ll, ll>; #define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i) #define rep(i, n) drep(i, 0, n - 1) #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 1; template<typename T> struct edge{ int from, to; T cost; int id; edge(){} edge(int to, T cost=1) : from(-1), to(to), cost(cost){} edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){} }; template<typename T> struct redge{ int from, to; T cap, cost; int rev; redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){} redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){} }; template<typename T> using Edges = vector<edge<T>>; template<typename T> using weighted_graph = vector<Edges<T>>; template<typename T> using tree = vector<Edges<T>>; using unweighted_graph = vector<vector<int>>; template<typename T> using residual_graph = vector<vector<redge<T>>>; template<long long mod> class modint{ long long x; public: modint(long long x=0) : x((x%mod+mod)%mod) {} modint operator-() const { return modint(-x); } bool operator==(const modint& a){ if(x == a) return true; else return false; } bool operator==(long long a){ if(x == a) return true; else return false; } bool operator!=(const modint& a){ if(x != a) return true; else return false; } bool operator!=(long long a){ if(x != a) return true; else return false; } modint& operator+=(const modint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& a) { (x *= a.x) %= mod; return *this; } modint operator+(const modint& a) const { modint res(*this); return res+=a; } modint operator-(const modint& a) const { modint res(*this); return res-=a; } modint operator*(const modint& a) const { modint res(*this); return res*=a; } modint pow(long long t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2); } modint& operator/=(const modint& a) { return (*this) *= a.inv(); } modint operator/(const modint& a) const { modint res(*this); return res/=a; } friend std::istream& operator>>(std::istream& is, modint& m) noexcept { is >> m.x; m.x %= mod; if (m.x < 0) m.x += mod; return is; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } }; using mint = modint<MOD998244353>; int vec_to_int(vector<int> &vec){ int v = 0; for(int x : vec) v = 10*v + x; return v; } void solve(){ int n, m, k; cin >> n >> m >> k; map<vector<int>, mint> dp; unweighted_graph G(n); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; u--; v--; G[u].pb(v); G[v].pb(u); } vector<bool> check(1e8, false); vector<int> idx(n, 0); queue<vector<int>> Q; for(int v=0; v<n; v++){ idx.pb(v); idx[v] = 1; dp[idx] = 1; Q.push(idx); check[vec_to_int(idx)]=true; idx[v] = 0; idx.pop_back(); } while(!Q.empty()){ vector<int> idx = Q.front(); Q.pop(); mint value = dp[idx]; int v = idx.back(); for(int to : G[v]) if(idx[to]<k){ idx.back() = to; idx[to]++; dp[idx] += value; if(!check[vec_to_int(idx)]) Q.push(idx); check[vec_to_int(idx)] = true; idx.back() = v; idx[to]--; } } mint ans = 0; for(int v=0; v<n; v++) idx[v] = k; for(int v=0; v<n; v++){ idx.pb(v); ans += dp[idx]; idx.pop_back(); } cout << ans << '\n'; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int T=1; //cin >> T; while(T--) solve(); }