結果
| 問題 |
No.2440 Accuracy of Integer Division Approximate Functions
|
| ユーザー |
👑 |
| 提出日時 | 2024-04-27 01:48:30 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 8 ms / 2,000 ms |
| コード長 | 6,250 bytes |
| コンパイル時間 | 13,471 ms |
| コンパイル使用メモリ | 406,640 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-11-14 18:19:59 |
| 合計ジャッジ時間 | 15,261 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 20 |
ソースコード
use proconio::{fastout, input};
/// chmax, chmin sugar syntax
pub trait Change {
fn chmax(&mut self, x: Self);
fn chmin(&mut self, x: Self);
}
impl<T: PartialOrd> Change for T {
fn chmax(&mut self, x: T) {
if *self < x {
*self = x;
}
}
fn chmin(&mut self, x: T) {
if *self > x {
*self = x;
}
}
}
use core::num::NonZeroU64;
#[cfg(target_arch = "x86_64")]
pub unsafe fn divrem_helper(x: u128, y: NonZeroU64) -> (u64, u64) {
debug_assert!(((x >> 64) as u64) < y.get(), "division overflow");
let (mut quot, mut rem): (u64, u64);
core::arch::asm!(
"div {0}",
in(reg) y.get(),
inout("rax") (x as u64) => quot,
inout("rdx") ((x >> 64) as u64) => rem,
options(pure, nomem, nostack)
);
(quot, rem)
}
#[cfg(not(target_arch = "x86_64"))]
pub unsafe fn divrem_helper(a: u128, b: NonZeroU64) -> (u64, u64) {
use core::num::NonZeroU128;
(
(a / NonZeroU128::from(b)) as u64,
(a % NonZeroU128::from(b)) as u64,
)
}
pub fn udivrem_shim(x: u128, y: u128) -> (u128, u128) {
let (xh, xl) = ((x >> 64) as u64, x as u64);
let (yh, yl) = ((y >> 64) as u64, y as u64);
if yh == 0 {
if xh >= yl {
if yl == 0 {
panic!()
}
let (qh, rh) = (xh / yl, xh % yl);
let (ql, rl) = unsafe {
divrem_helper(
((rh as u128) << 64) + (xl as u128),
NonZeroU64::new_unchecked(yl),
)
};
(((qh as u128) << 64) + (ql as u128), rl as u128)
} else {
let (q, r) = unsafe { divrem_helper(x, NonZeroU64::new_unchecked(yl)) };
(q as u128, r as u128)
}
} else {
if xh >= yh {
let s = yh.leading_zeros();
if s != 0 {
let ys = y << s;
let (ysh, _ysl) = ((ys >> 64) as u64, ys as u64);
let xs = x >> (64 - s);
let (q, _r) = unsafe { divrem_helper(xs, NonZeroU64::new_unchecked(ysh)) };
match x.overflowing_sub((q as u128) * y) {
(r, false) => ((q as u128), r),
(r, true) => (((q - 1) as u128), r.wrapping_add(y)),
}
} else {
if xh <= yh && xl < yl {
(0, x)
} else {
(1, x - y)
}
}
} else {
(0, x)
}
}
}
// calc sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
pub fn floor_sum_unsigned_mod64(mut n: u128, mut m: u128, mut a: u128, mut b: u128) -> u64 {
if m == 0 {
panic!();
}
let mut ans = 0u64;
// 2^64 <= max(n, m, a, b) < 2^128, a * n + b < 2^128, a < 2^64
while (n | m | a | b) >> 64 != 0 {
if a >= m {
let (q, r) = udivrem_shim(a, m);
ans = ans.wrapping_add(((n * (n - 1) >> 1).wrapping_mul(q)) as u64);
a = r;
}
if b >= m {
let (q, r) = udivrem_shim(b, m);
ans = ans.wrapping_add((n.wrapping_mul(q)) as u64);
b = r;
}
let y = a * n + b;
if y < m {
return ans;
}
(n, b) = udivrem_shim(y, m);
(m, a) = (a, m);
}
let (mut n, mut m, mut a, mut b) = (n as u64, m as u64, a as u64, b as u64);
// 2^32 <= max(n, m, a, b) < 2^64
while (n | m | a | b) >> 32 != 0 {
if a >= m {
ans = ans.wrapping_add(
((n >> 1).wrapping_mul(if (n & 1) == 0 { n - 1 } else { n })).wrapping_mul(a / m),
);
a %= m;
}
if b >= m {
ans = ans.wrapping_add(n.wrapping_mul(b / m));
b %= m;
}
let y = (a as u128) * (n as u128) + (b as u128);
if y < (m as u128) {
return ans;
}
let (q, r) = udivrem_shim(y, m as u128);
(n, b, m, a) = (q as u64, r as u64, a, m);
}
// max(n, m, a, b) < 2^32
loop {
if a >= m {
ans = ans.wrapping_add(
((n >> 1).wrapping_mul(if (n & 1) == 0 { n - 1 } else { n })).wrapping_mul(a / m),
);
a %= m;
}
if b >= m {
ans = ans.wrapping_add(n.wrapping_mul(b / m));
b %= m;
}
let y = a * n + b;
if y < m {
return ans;
}
(n, b, m, a) = (y / m, y % m, a, m);
}
}
// calc min(floor(a * 2^s / b), 2^64 - 1)
pub fn solve_div_helper(mut a: u128, b: u128, mut s: u32) -> u64 {
debug_assert!(b < (1u128 << 127));
debug_assert!(s < 128);
if b == 0 {
// divide zero: return max_value
return !0u64;
}
let mut ans = 0u64;
loop {
let t = s.min(a.leading_zeros());
s -= t;
a <<= t;
if ans > 0 {
if ans.leading_zeros() < t {
return !0u64;
}
ans <<= t;
}
let (q, r) = udivrem_shim(a, b);
ans = match u64::try_from(q).ok().and_then(|q| ans.checked_add(q)) {
Some(ans) => ans,
None => return !0u64,
};
a = r;
if s == 0 {
return ans;
}
}
}
pub fn calc(mut n: u64, d: u64, m: u64, s: u32) -> u64 {
use std::cmp::Ordering::*;
debug_assert!(n < (1u64 << 60));
debug_assert!(d < (1u64 << 60) && d > 0);
debug_assert!(m < (1u64 << 60));
debug_assert!(s < 121);
let (d, m) = (d as u128, m as u128);
let (pow2s, dm) = (1u128 << s, d * m);
n.chmin(solve_div_helper(d, dm.abs_diff(pow2s), s));
let n1 = (n + 1) as u128;
match pow2s.cmp(&dm) {
Equal => n,
Less => n
.wrapping_sub(floor_sum_unsigned_mod64(n1, pow2s, m, 0))
.wrapping_add(floor_sum_unsigned_mod64(n1, d, 1, 0)),
Greater => n
.wrapping_add(floor_sum_unsigned_mod64(n1, pow2s, m, 0))
.wrapping_sub(floor_sum_unsigned_mod64(n1, d, 1, 0)),
}
}
#[fastout]
fn main() {
input! { q: u32 }
for _ in 0..q {
input! { n: u64, d: u64, m: u64, s: u32 }
println!("{}", calc(n, d, m, s));
}
}