結果
問題 | No.2770 Coupon Optimization |
ユーザー | 👑 hahho |
提出日時 | 2024-05-11 00:19:08 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,817 ms / 3,000 ms |
コード長 | 4,375 bytes |
コンパイル時間 | 218 ms |
コンパイル使用メモリ | 82,080 KB |
実行使用メモリ | 159,424 KB |
最終ジャッジ日時 | 2024-05-11 00:19:33 |
合計ジャッジ時間 | 23,446 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
59,380 KB |
testcase_01 | AC | 45 ms
59,668 KB |
testcase_02 | AC | 54 ms
59,140 KB |
testcase_03 | AC | 1,734 ms
157,304 KB |
testcase_04 | AC | 1,728 ms
155,176 KB |
testcase_05 | AC | 84 ms
101,608 KB |
testcase_06 | AC | 1,791 ms
144,172 KB |
testcase_07 | AC | 1,751 ms
144,544 KB |
testcase_08 | AC | 1,816 ms
158,536 KB |
testcase_09 | AC | 498 ms
103,548 KB |
testcase_10 | AC | 925 ms
110,400 KB |
testcase_11 | AC | 902 ms
107,984 KB |
testcase_12 | AC | 927 ms
119,304 KB |
testcase_13 | AC | 908 ms
113,876 KB |
testcase_14 | AC | 1,817 ms
158,128 KB |
testcase_15 | AC | 1,787 ms
159,424 KB |
testcase_16 | AC | 1,817 ms
158,584 KB |
testcase_17 | AC | 1,799 ms
158,324 KB |
ソースコード
from cmath import rect, pi def reverse_bits32(x: int): x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1) x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2) x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4) x = ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8) return ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16) def prime_factors(n): """ nの素因数列を生成する :param n: 自然数 :return: nの素因数を小さいものから順に返すgenerator """ i = 2 while i * i <= n: if n % i: i += 1 else: n //= i yield i if n > 1: yield n def totient_factors(n): def it(): prev = -1 for p in prime_factors(n): if p == prev: yield p else: prev = p for q in prime_factors(p - 1): yield q return it() def int_product(iterable): x = 1 for y in iterable: x *= y return x def primitive_root(mod, phi_factors=None): if phi_factors is None: phi_factors = tuple(totient_factors(mod)) phi = int_product(phi_factors) primes = set(phi_factors) for i in range(2, mod): for p in primes: if modpow(i, (phi // p), mod) == 1: break else: return i else: raise ValueError(f'There is no primitive root for modulo {mod}') def modinv(x: int, mod: int) -> int: """ Z/(mod Z)上でのxの逆元 :param x: 整数 :param mod: 整数 :return: x * y % mod = 1を満たすy """ s, ps, r, pr = 0, 1, mod, x while r != 0: pr, (q, r) = r, divmod(pr, r) ps, s = s, ps - q * s if pr == 1: return ps if ps >= 0 else ps + mod raise ValueError("base is not invertible for the given modulus") def modpow(x, k, mod): """ Z/(mod Z)上でのxのk乗 :param x: 整数 :param k: 整数 :param mod: 整数 :return: x ** k % mod """ if k < 0: x = modinv(x, mod) k = -k r = 1 while k != 0: if k & 1: r = (r * x) % mod x = (x * x) % mod k >>= 1 return r def ntt(a, mod: int, inverse: bool = False): if type(a[0]) is not int: for i, v in enumerate(a): a[i] = int(v) n = (len(a) - 1).bit_length() d2 = 0 r = 1 phi_factors = tuple(totient_factors(mod)) for p in phi_factors: if p == 2: d2 += 1 else: r *= p if d2 < n: raise ValueError(f'Given array is too long: modulo {mod} only support array length up to {2 ** d2}') pr = primitive_root(mod, phi_factors) if inverse: pr = modinv(pr, mod) pows = [modpow(pr, r * 2 ** (d2 - n), mod)] for _ in range(n - 1): pows.append(pows[-1] ** 2 % mod) pows = tuple(reversed(pows)) m = 2 ** n a.extend(0 for _ in range(m - len(a))) shift = 32 - n for i in range(m): j = reverse_bits32(i) >> shift if i < j: a[i], a[j] = a[j], a[i] for i in range(m): b = 1 for w1 in pows: if not i & b: break i ^= b w = 1 while not i & b: j = i | b s = a[i] t = a[j] * w a[i] = (s + t) % mod a[j] = (s - t) % mod w = (w * w1) % mod i += 1 i ^= b b <<= 1 if inverse: c = modinv(m, mod) for i, v in enumerate(a): a[i] = (v * c) % mod return a n, m = map(int, input().split()) aa = list(map(int,input().split())) bb = list(map(int,input().split())) aa = [a//100 for a in aa] bb = [100-b for b in bb] aa.sort() bb.sort() if len(bb) < len(aa): bb += [100]*(len(aa)-len(bb)) elif len(bb) > len(aa): bb = bb[:len(aa)] aa += [0]*len(aa) bb += [0]*len(bb) p0 = 924844033 fa = ntt(aa[:], p0) fb = ntt(bb[:], p0) fc = [(u*v)%p0 for u,v in zip(fa, fb)] cc0 = ntt(fc, p0, inverse=True) p1 = 998244353 fa = ntt(aa, p1) fb = ntt(bb, p1) fc = [(u*v)%p1 for u,v in zip(fa, fb)] cc1 = ntt(fc, p1, inverse=True) k0 = p1*modinv(p1, p0) k1 = p0*modinv(p0, p1) kk = p0*p1 for c0, c1 in zip(cc0[:n], cc1[:n]): print((c0*k0 + c1*k1)%kk)