結果

問題 No.1320 Two Type Min Cost Cycle
ユーザー umimel
提出日時 2024-06-09 13:27:23
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,451 ms / 2,000 ms
コード長 6,799 bytes
コンパイル時間 2,995 ms
コンパイル使用メモリ 200,712 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-30 02:30:50
合計ジャッジ時間 17,478 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 57
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In lambda function:
main.cpp:108:18: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
  108 |             auto [tmp, v] = pq.top();
      |                  ^
main.cpp: In function 'std::tuple<T, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> > > mincostcycle(graph<T>)':
main.cpp:219:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
  219 |         auto [r_cost, r_vcycle, r_ecycle] = mincostcycle<T>(g, r);
      |              ^
main.cpp: In function 'void solve()':
main.cpp:242:10: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
  242 |     auto [cost, vcycle, ecycle] = mincostcycle(g);
      |          ^
main.cpp: In function 'std::tuple<T, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> > > mincostcycle(graph<T>, int) [with T = long long int]':
main.cpp:207:1: warning: control reaches end of non-void function [-Wreturn-type]
  207 | }
      | ^

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
#define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i)
#define rep(i, n) drep(i, 0, n - 1)
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 1;


template<typename T> 
struct edge{
    int from;
    int to;
    T cost;
    int id;

    edge(){}
    edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
    edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){}
    edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}

    void reverse(){swap(from, to);}
};

template<typename T>
struct edges : std::vector<edge<T>>{
    void sort(){
        std::sort(
            (*this).begin(),
            (*this).end(), 
            [](const edge<T>& a, const edge<T>& b){
                return a.cost < b.cost;
            }
        );
    }
};

template<typename T>
struct graph : std::vector<edges<T>>{
    int n = 0;
    int m = 0;
    edges<T> es;
    bool directed;

    graph(int n, bool directed) : n(n), directed(directed){
        (*this).resize(n);
    }

    void add_edge(int from, int to, T cost=1){
        if(directed){
            es.push_back(edge<T>(from, to, cost, m));
            (*this)[from].push_back(edge<T>(from, to, cost, m++));
        }else{
            if(from > to) swap(from, to);
            es.push_back(edge<T>(from, to, cost, m));
            (*this)[from].push_back(edge<T>(from, to, cost, m));
            (*this)[to].push_back(edge<T>(to, from, cost, m++));
        }
    }
};

template<typename T>
struct redge{
    int from, to;
    T cap, cost;
    int rev;
    
    redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
    redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};

template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;


template<typename T>
tuple<T, vector<int>, vector<int>> mincostcycle(graph<T> g, int s){
    struct dat{
        T dist;
        int pv;
        int pe;
    };

    int n = g.n;
    const T TINF = numeric_limits<T>::max()/2;
    bool is_directed = g.directed;

    // return shortest path tree vec, vec[v] = {dist(r, v), parent of r, edge id of (parent of r, r)};
    function<vector<dat>()> dijkstra = [&](){
        vector<dat> vec(n, {TINF, -1, -1});
        vec[s].dist = 0;
        priority_queue<pair<T, int>, vector<pair<T, int>>, greater<>> pq;
        pq.push({0, s});
        while(!pq.empty()){
            auto [tmp, v] = pq.top();
            pq.pop();
            if(vec[v].dist < tmp) continue;

            for(edge<T> e : g[v]){
                if(vec[v].dist+e.cost < vec[e.to].dist){
                    vec[e.to].dist = vec[v].dist + e.cost;
                    vec[e.to].pv = v;
                    vec[e.to].pe = e.id;
                    pq.push({vec[e.to].dist, e.to});
                }
            }
        }

        return vec;
    };

    // g is a directed graph
    if(is_directed){
        vector<dat> vec = dijkstra();
        T cost = TINF;
        int vlast = -1;
        int elast = -1;
        for(int v=0; v<n; v++) for(edge<T> e : g[v]) if(e.to == s){
            if(vec[v].dist + e.cost < cost){
                cost = vec[v].dist + e.cost;
                vlast = v;
                elast = e.id;
            }
        }

        if(cost == TINF) return {T(-1), {}, {}};

        vector<int> vcycle;
        vector<int> ecycle;
        ecycle.push_back(elast);
        while(vlast != -1){
            vcycle.push_back(vlast);
            ecycle.push_back(vec[vlast].pe);
            vlast = vec[vlast].pv;
        }
        ecycle.pop_back();
        reverse(all(vcycle));
        reverse(all(ecycle));

        return {cost, vcycle, ecycle};
    }

    // g is an undirected graph
    if(!is_directed){
        vector<dat> vec = dijkstra();
        graph<bool> spt(n, false);
        for(int v=0; v<n; v++) if(v!=s && vec[v].dist != TINF){
            spt.add_edge(v, vec[v].pv);
        }

        vector<int> label(n, -1);
        label[s] = s;
        function<void(int, int, int)> dfs = [&](int v, int p, int l){
            label[v] = l;
            for(edge<bool> e : spt[v]) if(e.to != p) dfs(e.to, v, l);
        };

        for(edge<bool> e : spt[s]) dfs(e.to, s, e.to);

        T cost = TINF;
        int x = -1, y = -1, min_e = -1;
        for(int v=0; v<n; v++) if(v != s) for(edge<T> e : g[v]){
            if(vec[v].pv != e.to && label[v] != label[e.to]){
                if(vec[v].dist + vec[e.to].dist + e.cost < cost){
                    cost = vec[v].dist + vec[e.to].dist + e.cost;
                    x = v;
                    y = e.to;
                    min_e = e.id;
                }
            }
        }

        if(cost == TINF) return {T(-1), {}, {}};

        vector<int> vcycle, ecycle;
        ecycle.push_back(min_e);
        while(x != -1){
            vcycle.push_back(x);
            ecycle.push_back(vec[x].pe);
            x = vec[x].pv;
        }
        ecycle.pop_back();
        reverse(all(vcycle));
        reverse(all(ecycle));

        while(y != s){
            vcycle.push_back(y);
            ecycle.push_back(vec[y].pe);
            y = vec[y].pv;
        }

        return {cost, vcycle, ecycle};
    }
}

template<typename T>
tuple<T, vector<int>, vector<int>> mincostcycle(graph<T> g){
    int n = g.n;
    const T TINF = numeric_limits<T>::max()/2;

    T cost = TINF;
    vector<int> vcycle;
    vector<int> ecycle;

    for(int r=0; r<n; r++){
        auto [r_cost, r_vcycle, r_ecycle] = mincostcycle<T>(g, r);
        if(r_cost != -1 && r_cost < cost){
            cost = r_cost;
            vcycle = r_vcycle;
            ecycle = r_ecycle;
        }
    }

    if(cost == TINF) return {T(-1), {}, {}};
    else return {cost, vcycle, ecycle};
}

void solve(){
    bool type; cin >> type;
    int n, m; cin >> n >> m;
    graph<ll> g(n, type);
    for(int i=0; i<m; i++){
        int u, v; cin >> u >> v;
        ll w; cin >> w;
        u--; v--;
        g.add_edge(u, v, w);
    }

    auto [cost, vcycle, ecycle] = mincostcycle(g);
    cout << cost << '\n';
}

int main(){
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    
    int T=1;
    //cin >> T;
    while(T--) solve();
}
0