結果

問題 No.235 めぐるはめぐる (5)
ユーザー ngtkanangtkana
提出日時 2024-06-24 13:24:30
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 3,503 ms / 10,000 ms
コード長 56,023 bytes
コンパイル時間 14,400 ms
コンパイル使用メモリ 387,600 KB
実行使用メモリ 60,020 KB
最終ジャッジ日時 2024-06-24 13:24:59
合計ジャッジ時間 28,392 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3,503 ms
59,128 KB
testcase_01 AC 2,274 ms
60,020 KB
testcase_02 AC 3,292 ms
59,368 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `factorial::Factorial`
   --> src/main.rs:870:13
    |
870 |     pub use factorial::Factorial;
    |             ^^^^^^^^^^^^^^^^^^^^
    |
    = note: `#[warn(unused_imports)]` on by default

warning: unused import: `fourier::any_mod_fps_mul`
   --> src/main.rs:871:13
    |
871 |     pub use fourier::any_mod_fps_mul;
    |             ^^^^^^^^^^^^^^^^^^^^^^^^

warning: unused import: `fourier::fft`
   --> src/main.rs:872:13
    |
872 |     pub use fourier::fft;
    |             ^^^^^^^^^^^^

warning: unused import: `fourier::fps_mul`
   --> src/main.rs:873:13
    |
873 |     pub use fourier::fps_mul;
    |             ^^^^^^^^^^^^^^^^

warning: unused import: `fourier::ifft`
   --> src/main.rs:874:13
    |
874 |     pub use fourier::ifft;
    |             ^^^^^^^^^^^^^

ソースコード

diff #

use proconio::input;
use proconio::marker::Usize1;
use splay_tree::SplayTree;

type Fp = fp::Fp<1_000_000_007>;

fn main() {
    input! {
        n: usize,
        sum: [usize; n],
        coeff: [usize; n],
        edges: [(Usize1, Usize1); n - 1],
        q: usize,
    }

    let (hld, _g) = Hld::from_edges(0, &edges);

    let mut values = vec![
        Value {
            coeff: fp!(0),
            sum: fp!(0)
        };
        n
    ];
    for (x, &i) in hld.index.iter().enumerate() {
        values[i] = Value {
            coeff: fp!(coeff[x]),
            sum: fp!(sum[x]),
        };
    }
    let mut lazy_segtree = SplayTree::<O>::from_iter(values);
    for _ in 0..q {
        input! {
            com: String,
        }
        match com.as_str() {
            "0" => {
                input! {
                    i: Usize1,
                    j: Usize1,
                    op: usize,
                }
                hld.visit_path_segments_including_lca_by_index(i, j, |i, j| {
                    lazy_segtree.act(i..=j, fp!(op));
                });
            }
            "1" => {
                input! {
                    i: Usize1,
                    j: Usize1,
                }
                let mut ans = fp!(0);
                hld.visit_path_segments_including_lca_by_index(i, j, |i, j| {
                    ans += lazy_segtree.fold(i..=j).unwrap().sum;
                });
                println!("{ans}");
            }
            _ => unreachable!(),
        }
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
struct Value {
    coeff: Fp,
    sum: Fp,
}

enum O {}
impl splay_tree::LazyOps for O {
    type Acc = Value;
    type Lazy = Fp;
    type Value = Value;

    fn proj(value: &Self::Value) -> Self::Acc {
        *value
    }

    fn op(lhs: &Self::Acc, rhs: &Self::Acc) -> Self::Acc {
        Value {
            coeff: lhs.coeff + rhs.coeff,
            sum: lhs.sum + rhs.sum,
        }
    }

    fn act_value(lazy: &Self::Lazy, value: &mut Self::Value) {
        value.sum += lazy * value.coeff;
    }

    fn act_acc(lazy: &Self::Lazy, acc: &mut Self::Acc) {
        acc.sum += lazy * acc.coeff;
    }

    fn compose(upper: &Self::Lazy, lower: &mut Self::Lazy) {
        *lower += upper;
    }
}

pub struct Hld {
    pub parent: Vec<usize>,
    pub index: Vec<usize>,
    pub head: Vec<usize>,
}
impl Hld {
    pub fn from_short_parents(mut parent: Vec<usize>) -> (Self, Vec<Vec<usize>>) {
        parent.insert(0, 0);
        let mut g = vec![Vec::new(); parent.len()];
        for (i, &p) in parent.iter().enumerate().skip(1) {
            g[p].push(i);
        }
        (__build_hld(0, &mut g, parent), g)
    }

    pub fn from_edges(root: usize, edges: &[(usize, usize)]) -> (Self, Vec<Vec<usize>>) {
        let mut g = vec![Vec::new(); edges.len() + 1];
        for &(i, j) in edges {
            g[i].push(j);
            g[j].push(i);
        }
        let parent = __remove_parent(root, &mut g);
        (__build_hld(root, &mut g, parent), g)
    }

    pub fn visit_path_segments_including_lca(
        &self,
        mut i: usize,                    // id
        mut j: usize,                    // id
        mut f: impl FnMut(usize, usize), // id
    ) {
        while self.head[i] != self.head[j] {
            if self.index[i] < self.index[j] {
                f(self.head[j], j);
                j = self.parent[self.head[j]];
            } else {
                f(self.head[i], i);
                i = self.parent[self.head[i]];
            }
        }
        if self.index[i] < self.index[j] {
            f(i, j)
        } else {
            f(j, i)
        }
    }

    pub fn visit_path_segments_including_lca_by_index(
        &self,
        i: usize,                        // id
        j: usize,                        // id
        mut f: impl FnMut(usize, usize), // index
    ) {
        self.visit_path_segments_including_lca(i, j, |i, j| f(self.index[i], self.index[j]));
    }

    pub fn lca(&self, mut i: usize, mut j: usize) -> usize {
        while self.head[i] != self.head[j] {
            if self.index[i] < self.index[j] {
                j = self.parent[self.head[j]];
            } else {
                i = self.parent[self.head[i]];
            }
        }
        std::cmp::min_by_key(i, j, |&i| self.index[i])
    }
}

fn __build_hld(root: usize, g: &mut [Vec<usize>], parent: Vec<usize>) -> Hld {
    let n = g.len();
    __heavy_first(0, g);
    let mut index = vec![usize::MAX; n];
    let mut head = vec![usize::MAX; n];
    head[root] = root;
    __head_and_index(0, &*g, &mut head, &mut index, &mut (0..));
    Hld {
        parent,
        index,
        head,
    }
}
fn __head_and_index(
    i: usize,
    g: &[Vec<usize>],
    head: &mut [usize],
    index: &mut [usize],
    current: &mut std::ops::RangeFrom<usize>,
) {
    index[i] = current.next().unwrap();
    for &j in &g[i] {
        head[j] = if j == g[i][0] { head[i] } else { j };
        __head_and_index(j, g, head, index, current);
    }
}

fn __heavy_first(i: usize, g: &mut [Vec<usize>]) -> usize {
    let mut max = 0;
    let mut size = 1;
    for e in 0..g[i].len() {
        let csize = __heavy_first(g[i][e], g);
        if max < csize {
            max = csize;
            g[i].swap(0, e);
        }
        size += csize;
    }
    size
}

fn __remove_parent(root: usize, g: &mut [Vec<usize>]) -> Vec<usize> {
    let mut stack = vec![root];
    let mut parent = vec![usize::MAX; g.len()];
    parent[root] = root;
    while let Some(i) = stack.pop() {
        g[i].retain(|&j| parent[i] != j);
        for &j in &g[i] {
            parent[j] = i;
            stack.push(j);
        }
    }
    parent
}
// link_cut_tree {{{
// https://ngtkana.github.io/ac-adapter-rs/link_cut_tree/index.html

#[allow(dead_code)]
mod link_cut_tree {
    mod base {
        #[doc(hidden)]
        pub trait OpBase {
            type Value: Clone;
            type InternalValue: Clone;
            fn identity() -> Self::InternalValue;
            fn mul(lhs: &Self::InternalValue, rhs: &Self::InternalValue) -> Self::InternalValue;
            fn into_front(value: Self::InternalValue) -> Self::Value;
            fn from_front(value: Self::Value) -> Self::InternalValue;
            fn rev(value: &mut Self::InternalValue);
        }
        pub struct LinkCutTreeBase<O: OpBase> {
            nodes: Vec<Node<O>>,
        }
        impl<O: OpBase> LinkCutTreeBase<O> {
            pub fn new(n: usize) -> Self {
                Self {
                    nodes: (0..n)
                        .map(|id| Node {
                            id,
                            parent: std::ptr::null_mut(),
                            left: std::ptr::null_mut(),
                            right: std::ptr::null_mut(),
                            rev: false,
                            value: O::identity(),
                            acc: O::identity(),
                        })
                        .collect(),
                }
            }

            pub fn from_values(values: impl IntoIterator<Item = O::Value>) -> Self {
                Self {
                    nodes: values
                        .into_iter()
                        .map(O::from_front)
                        .enumerate()
                        .map(|(id, value)| Node {
                            id,
                            parent: std::ptr::null_mut(),
                            left: std::ptr::null_mut(),
                            right: std::ptr::null_mut(),
                            rev: false,
                            value: value.clone(),
                            acc: value,
                        })
                        .collect(),
                }
            }

            pub fn link(&mut self, p: usize, c: usize) {
                unsafe {
                    let c = std::ptr::addr_of_mut!(self.nodes[c]);
                    let p = std::ptr::addr_of_mut!(self.nodes[p]);
                    expose(c);
                    assert!((*c).left.is_null(), "c = {} is not a root", (*c).id);
                    expose(p);
                    assert!(
                        (*c).parent.is_null(),
                        "c = {} and p = {} are already connected",
                        (*c).id,
                        (*p).id
                    );
                    (*c).parent = p;
                    (*p).right = c;
                    update(p);
                }
            }

            pub fn undirected_link(&mut self, i: usize, j: usize) -> bool {
                if self.undirected_is_connected(i, j) {
                    return false;
                }
                self.evert(j);
                self.link(i, j);
                true
            }

            pub fn cut(&mut self, x: usize) -> Option<usize> {
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    expose(x);
                    let p = (*x).left;
                    (*x).left = std::ptr::null_mut();
                    let ans = p.as_ref().map(|p| p.id);
                    if !p.is_null() {
                        (*p).parent = std::ptr::null_mut();
                    }
                    update(x);
                    ans
                }
            }

            pub fn undirected_cut(&mut self, i: usize, j: usize) -> bool {
                if !self.undirected_has_edge(i, j) {
                    return false;
                }
                self.evert(i);
                self.cut(j);
                true
            }

            pub fn evert(&mut self, x: usize) {
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    expose(x);
                    rev(x);
                    push(x);
                }
            }

            pub fn undirected_has_edge(&mut self, x: usize, y: usize) -> bool {
                self.parent(x) == Some(y) || self.parent(y) == Some(x)
            }

            pub fn undirected_is_connected(&mut self, x: usize, y: usize) -> bool {
                if x == y {
                    return true;
                }
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    let y = std::ptr::addr_of_mut!(self.nodes[y]);
                    expose(x);
                    expose(y);
                    !(*x).parent.is_null()
                }
            }

            pub fn lca(&mut self, x: usize, y: usize) -> Option<usize> {
                if x == y {
                    return Some(x);
                }
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    let y = std::ptr::addr_of_mut!(self.nodes[y]);
                    expose(x);
                    let lca = expose(y);
                    if (*x).parent.is_null() {
                        None
                    } else {
                        Some((*lca).id)
                    }
                }
            }

            pub fn set(&mut self, x: usize, mut f: impl FnMut(O::Value) -> O::Value) {
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    expose(x);
                    (*x).value = O::from_front(f(O::into_front((*x).value.clone())));
                    update(x);
                }
            }

            pub fn fold(&mut self, x: usize) -> O::Value {
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    expose(x);
                    O::into_front((*x).acc.clone())
                }
            }

            pub fn undirected_fold(&mut self, i: usize, j: usize) -> Option<O::Value> {
                if !self.undirected_is_connected(i, j) {
                    return None;
                }
                self.evert(i);
                Some(self.fold(j))
            }

            pub fn parent(&mut self, x: usize) -> Option<usize> {
                unsafe {
                    let x = std::ptr::addr_of_mut!(self.nodes[x]);
                    expose(x);
                    let mut p = (*x).left.as_mut()?;
                    while let Some(next) = p.right.as_mut() {
                        p = next;
                    }
                    splay(p);
                    Some(p.id)
                }
            }
        }
        #[derive(Clone, Copy)]
        struct Node<O: OpBase> {
            id: usize,
            parent: *mut Self,
            left: *mut Self,
            right: *mut Self,
            rev: bool,
            value: O::InternalValue,
            acc: O::InternalValue,
        }
        unsafe fn is_splay_root<O: OpBase>(x: *mut Node<O>) -> bool {
            let x = &*x;
            let p = match x.parent.as_ref() {
                Some(p) => p,
                None => return true,
            };
            !std::ptr::eq(x, p.left) && !std::ptr::eq(x, p.right)
        }
        unsafe fn push<O: OpBase>(x: *mut Node<O>) {
            let x = &mut *x;
            if x.rev {
                if let Some(l) = x.left.as_mut() {
                    rev(l);
                }
                if let Some(r) = x.right.as_mut() {
                    rev(r);
                }
                x.rev = false;
            }
        }
        unsafe fn update<O: OpBase>(x: *mut Node<O>) {
            let x = &mut *x;
            x.acc = x.value.clone();
            if !x.left.is_null() {
                x.acc = O::mul(&(*x.left).acc, &x.acc);
            }
            if !x.right.is_null() {
                x.acc = O::mul(&x.acc, &(*x.right).acc);
            }
        }
        unsafe fn rev<O: OpBase>(x: *mut Node<O>) {
            let x = &mut *x;
            std::mem::swap(&mut x.left, &mut x.right);
            O::rev(&mut x.acc);
            x.rev ^= true;
        }
        unsafe fn expose<O: OpBase>(x: *mut Node<O>) -> *mut Node<O> {
            let mut last = std::ptr::null_mut();
            let mut current = x;
            while !current.is_null() {
                splay(current);
                (*current).right = last;
                update(current);
                last = current;
                current = (*current).parent;
            }
            splay(x);
            last
        }
        unsafe fn splay<O: OpBase>(x: *mut Node<O>) {
            let x = &mut *x;
            push(x);
            while !is_splay_root(x) {
                let p = &mut *x.parent;
                if is_splay_root(p) {
                    push(p);
                    push(x);
                    if std::ptr::eq(p.left, x) {
                        rotate_right(p);
                    } else {
                        rotate_left(p);
                    }
                } else {
                    let g = &mut *p.parent;
                    push(g);
                    push(p);
                    push(x);
                    #[allow(clippy::collapsible_else_if)]
                    if std::ptr::eq(p.left, x) {
                        if std::ptr::eq(g.left, p) {
                            rotate_right(g);
                            rotate_right(p);
                        } else {
                            rotate_right(p);
                            rotate_left(g);
                        }
                    } else {
                        if std::ptr::eq(g.left, p) {
                            rotate_left(p);
                            rotate_right(g);
                        } else {
                            rotate_left(g);
                            rotate_left(p);
                        }
                    }
                }
            }
        }
        unsafe fn rotate_left<O: OpBase>(l: *mut Node<O>) {
            let l = &mut *l;
            let r = &mut *l.right;
            let p = l.parent;
            let c = r.left;
            l.right = c;
            if !c.is_null() {
                (*c).parent = l;
            }
            r.left = l;
            l.parent = r;
            r.parent = p;
            update(l);
            update(r);
            if !p.is_null() {
                if std::ptr::eq((*p).left, l) {
                    (*p).left = r;
                } else if std::ptr::eq((*p).right, l) {
                    (*p).right = r;
                }
                update(&mut *p);
            }
        }
        unsafe fn rotate_right<O: OpBase>(r: *mut Node<O>) {
            let r = &mut *r;
            let l = &mut *r.left;
            let p = r.parent;
            let c = l.right;
            r.left = c;
            if !c.is_null() {
                (*c).parent = r;
            }
            l.right = r;
            r.parent = l;
            l.parent = p;
            update(r);
            update(l);
            if !p.is_null() {
                if std::ptr::eq((*p).left, r) {
                    (*p).left = l;
                } else if std::ptr::eq((*p).right, r) {
                    (*p).right = l;
                }
                update(&mut *p);
            }
        }
    }
    pub use base::LinkCutTreeBase;
    use base::OpBase;
    pub trait Op {
        type Value: Clone;
        fn identity() -> Self::Value;
        fn mul(lhs: &Self::Value, rhs: &Self::Value) -> Self::Value;
    }
    impl OpBase for () {
        type InternalValue = ();
        type Value = ();

        fn identity() -> Self::InternalValue {}

        fn mul(_lhs: &Self::InternalValue, _rhs: &Self::InternalValue) -> Self::InternalValue {}

        fn rev(_value: &mut Self::InternalValue) {}

        fn into_front(_value: Self::InternalValue) {}

        fn from_front(_value: Self::Value) -> Self::InternalValue {}
    }
    pub type LinkCutTree = LinkCutTreeBase<()>;
    pub type CommutLinkCutTree<T> = LinkCutTreeBase<Commut<T>>;
    #[doc(hidden)]
    pub struct Commut<T: Op>(T);
    impl<T: Op> OpBase for Commut<T> {
        type InternalValue = T::Value;
        type Value = T::Value;

        fn identity() -> Self::InternalValue {
            T::identity()
        }

        fn mul(lhs: &Self::InternalValue, rhs: &Self::InternalValue) -> Self::InternalValue {
            T::mul(lhs, rhs)
        }

        fn rev(_value: &mut Self::InternalValue) {}

        fn into_front(value: Self::InternalValue) -> Self::Value {
            value
        }

        fn from_front(value: Self::Value) -> Self::InternalValue {
            value
        }
    }
    #[doc(hidden)]
    pub struct NonCommut<T: Op>(T);
    pub type NonCommutLinkCutTree<T> = LinkCutTreeBase<NonCommut<T>>;
    impl<T: Op> OpBase for NonCommut<T> {
        type InternalValue = (T::Value, T::Value);
        type Value = T::Value;

        fn identity() -> Self::InternalValue {
            (T::identity(), T::identity())
        }

        fn mul(lhs: &Self::InternalValue, rhs: &Self::InternalValue) -> Self::InternalValue {
            (T::mul(&lhs.0, &rhs.0), T::mul(&rhs.1, &lhs.1))
        }

        fn rev(value: &mut Self::InternalValue) {
            std::mem::swap(&mut value.0, &mut value.1);
        }

        fn into_front(value: Self::InternalValue) -> Self::Value {
            value.0
        }

        fn from_front(value: Self::Value) -> Self::InternalValue {
            (value.clone(), value)
        }
    }
}
// }}}
// fp {{{
// https://ngtkana.github.io/ac-adapter-rs/fp/index.html

#[allow(dead_code)]
mod fp {
    mod ext_gcd {
        pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 {
            debug_assert!(P % 2 == 1);
            debug_assert!(P < 1 << 31);
            debug_assert!(x < P);
            mod_inv_signed(x as i64, P as i64) as u64
        }
        fn mod_inv_signed(a: i64, m: i64) -> i64 {
            debug_assert!(a > 0);
            debug_assert!(m > 0);
            if a == 1 {
                return 1;
            }
            m + (1 - m * mod_inv_signed(m % a, a)) / a
        }
    }
    mod factorial {
        use super::Fp;
        use std::ops::Index;
        pub struct Factorial<const P: u64> {
            fact: Vec<Fp<P>>,
            inv_fact: Vec<Fp<P>>,
        }
        impl<const P: u64> Factorial<P> {
            pub fn new(length: usize) -> Self {
                let mut fact = vec![Fp::<P>::new(1); length + 1];
                let mut inv_fact = vec![Fp::<P>::new(1); length + 1];
                for i in 1..=length {
                    fact[i] = fact[i - 1] * Fp::<P>::new(i as u64);
                }
                inv_fact[length] = fact[length].inv();
                for i in (1..=length).rev() {
                    inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64);
                }
                Self { fact, inv_fact }
            }

            pub fn fact(&self, n: usize) -> Fp<P> {
                self.fact[n]
            }

            pub fn inv_fact(&self, n: usize) -> Fp<P> {
                self.inv_fact[n]
            }

            pub fn perm(&self, n: usize, k: usize) -> Fp<P> {
                self.fact[n] * self.inv_fact[n - k]
            }

            pub fn comb(&self, n: usize, k: usize) -> Fp<P> {
                self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k]
            }

            pub fn binom(&self, n: usize, k: usize) -> Fp<P> {
                self.comb(n, k)
            }

            pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> {
                if k < 0 || k as usize > n {
                    Fp::<P>::new(0)
                } else {
                    self.comb(n, k as usize)
                }
            }

            pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> {
                assert!(n > 0 || k > 0);
                self.comb(n + k - 1, k)
            }
        }
        impl<const P: u64> Index<usize> for Factorial<P> {
            type Output = Fp<P>;

            fn index(&self, index: usize) -> &Self::Output {
                &self.fact[index]
            }
        }
    }
    mod fourier {
        use super::mod_inv;
        use super::Fp;
        use super::PrimitiveRoot;
        const P1: u64 = 924844033;
        const P2: u64 = 998244353;
        const P3: u64 = 1012924417;
        type F1 = Fp<P1>;
        type F2 = Fp<P2>;
        type F3 = Fp<P3>;
        pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>>
        where
            (): PrimitiveRoot<P>,
        {
            let a = a.as_ref();
            let b = b.as_ref();
            if a.is_empty() || b.is_empty() {
                return vec![];
            }
            let mut a = a.to_vec();
            let mut b = b.to_vec();
            let n = a.len() + b.len() - 1;
            let len = n.next_power_of_two();
            a.resize(len, Fp::new(0));
            b.resize(len, Fp::new(0));
            fft(&mut a);
            fft(&mut b);
            for (a, b) in a.iter_mut().zip(b.iter()) {
                *a *= *b;
            }
            ifft(&mut a);
            a.truncate(n);
            a
        }
        pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> {
            let v1 = fps_mul(
                a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
            );
            let v2 = fps_mul(
                a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
            );
            let v3 = fps_mul(
                a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
            );
            v1.into_iter()
                .zip(v2)
                .zip(v3)
                .map(|((e1, e2), e3)| garner(e1, e2, e3))
                .collect::<Vec<_>>()
        }
        pub fn fft<const P: u64>(f: &mut [Fp<P>])
        where
            (): PrimitiveRoot<P>,
        {
            let n = f.len();
            assert!(n.is_power_of_two());
            assert!((P - 1) % n as u64 == 0);
            let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
            let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4);
            let mut fft_len = n;
            while 4 <= fft_len {
                let quarter = fft_len / 4;
                for f in f.chunks_mut(fft_len) {
                    let mut c = Fp::new(1);
                    for (((i, j), k), l) in (0..)
                        .zip(quarter..)
                        .zip(quarter * 2..)
                        .zip(quarter * 3..)
                        .take(quarter)
                    {
                        let c2 = c * c;
                        let x = f[i] + f[k];
                        let y = f[j] + f[l];
                        let z = f[i] - f[k];
                        let w = fourth * (f[j] - f[l]);
                        f[i] = x + y;
                        f[j] = c2 * (x - y);
                        f[k] = c * (z + w);
                        f[l] = c2 * c * (z - w);
                        c *= root;
                    }
                }
                root *= root;
                root *= root;
                fft_len = quarter;
            }
            if fft_len == 2 {
                for f in f.chunks_mut(2) {
                    let x = f[0];
                    let y = f[1];
                    f[0] = x + y;
                    f[1] = x - y;
                }
            }
        }
        pub fn ifft<const P: u64>(f: &mut [Fp<P>])
        where
            (): PrimitiveRoot<P>,
        {
            let n = f.len();
            assert!(n.is_power_of_two());
            let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
            let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x))
                .take(n.trailing_zeros() as usize + 1)
                .collect::<Vec<_>>();
            roots.reverse();
            let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv();
            let mut quarter = 1_usize;
            if n.trailing_zeros() % 2 == 1 {
                for f in f.chunks_mut(2) {
                    let x = f[0];
                    let y = f[1];
                    f[0] = x + y;
                    f[1] = x - y;
                }
                quarter = 2;
            }
            while quarter != n {
                let fft_len = quarter * 4;
                let root = roots[fft_len.trailing_zeros() as usize];
                for f in f.chunks_mut(fft_len) {
                    let mut c = Fp::new(1);
                    for (((i, j), k), l) in (0..)
                        .zip(quarter..)
                        .zip(quarter * 2..)
                        .zip(quarter * 3..)
                        .take(quarter)
                    {
                        let c2 = c * c;
                        let x = f[i] + c2 * f[j];
                        let y = f[i] - c2 * f[j];
                        let z = c * (f[k] + c2 * f[l]);
                        let w = fourth * c * (f[k] - c2 * f[l]);
                        f[i] = x + z;
                        f[j] = y + w;
                        f[k] = x - z;
                        f[l] = y - w;
                        c *= root;
                    }
                }
                quarter = fft_len;
            }
            let d = Fp::from(f.len()).inv();
            f.iter_mut().for_each(|x| *x *= d);
        }
        fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> {
            let (x1, x2, x3) = (x1.value(), x2.value(), x3.value());
            let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2;
            let x3 =
                (((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3;
            Fp::new(x1 + P1 * (x2 + P2 * x3 % P))
        }
    }
    use ext_gcd::mod_inv;
    pub use factorial::Factorial;
    pub use fourier::any_mod_fps_mul;
    pub use fourier::fft;
    pub use fourier::fps_mul;
    pub use fourier::ifft;
    use std::iter::Product;
    use std::iter::Sum;
    use std::mem::swap;
    use std::ops::Add;
    use std::ops::AddAssign;
    use std::ops::Div;
    use std::ops::DivAssign;
    use std::ops::Mul;
    use std::ops::MulAssign;
    use std::ops::Neg;
    use std::ops::Sub;
    use std::ops::SubAssign;
    #[macro_export]
    macro_rules! fp {
        ($value:expr) => {
            $crate::fp::Fp::from($value)
        };
        ($value:expr; mod $p:expr) => {
            $crate::fp::Fp::<$p>::from($value)
        };
    }
    pub trait PrimitiveRoot<const P: u64> {
        const VALUE: Fp<P>;
    }
    impl PrimitiveRoot<998244353> for () {
        const VALUE: Fp<998244353> = Fp::new(3);
    }
    impl PrimitiveRoot<1012924417> for () {
        const VALUE: Fp<1012924417> = Fp::new(5);
    }
    impl PrimitiveRoot<924844033> for () {
        const VALUE: Fp<924844033> = Fp::new(5);
    }
    #[derive(Clone, Copy, PartialEq, Eq, Hash)]
    pub struct Fp<const P: u64> {
        value: u64,
    }
    impl<const P: u64> Fp<P> {
        pub const fn new(value: u64) -> Self {
            Self { value: value % P }
        }

        pub const fn value(self) -> u64 {
            self.value
        }

        pub fn inv(self) -> Self {
            Self {
                value: mod_inv::<P>(self.value),
            }
        }

        pub fn pow(self, mut exp: u64) -> Self {
            let mut result = Self::new(1);
            let mut base = self;
            while exp > 0 {
                if exp & 1 == 1 {
                    result *= base;
                }
                base *= base;
                exp >>= 1;
            }
            result
        }

        pub fn sign(pow: usize) -> Self {
            Self::new(if pow % 2 == 0 { 1 } else { P - 1 })
        }
    }
    impl<const P: u64> std::fmt::Debug for Fp<P> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] {
                let mut u0 = 0_i64;
                let mut v0 = 1_i64;
                let mut w0 = a * u0 + p * v0;
                let mut u1 = 1_i64;
                let mut v1 = 0_i64;
                let mut w1 = a * u1 + p * v1;
                while p <= w0 * w0 {
                    let q = w0 / w1;
                    u0 -= q * u1;
                    v0 -= q * v1;
                    w0 -= q * w1;
                    swap(&mut u0, &mut u1);
                    swap(&mut v0, &mut v1);
                    swap(&mut w0, &mut w1);
                }
                [w0, u0]
            }
            if self.value == 0 {
                return write!(f, "0");
            }
            let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64);
            if den < 0 {
                num = -num;
                den = -den;
            }
            if den == 1 {
                write!(f, "{}", num)
            } else {
                write!(f, "{}/{}", num, den)
            }
        }
    }
    impl<const P: u64> std::fmt::Display for Fp<P> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{}", self.value())
        }
    }
    macro_rules! impl_from_signed {
        ($($t:ty),*) => {
            $(
                impl<const P: u64> From<$t> for Fp<P> {
                    fn from(x: $t) -> Self {
                        if x < 0 {
                            -Self::new((P as i64 - x as i64) as u64)
                        } else {
                            Self::new(x as u64)
                        }
                    }
                }
            )*
        };
    }
    impl_from_signed!(i8, i16, i32, i64, i128, isize);
    macro_rules! impl_from_unsigned {
        ($($t:ty),*) => {
            $(
                impl<const P: u64> From<$t> for Fp<P> {
                    fn from(x: $t) -> Self { Self::new(x as u64) }
                }
            )*
        };
    }
    impl_from_unsigned!(u8, u16, u32, u64, u128, usize);
    impl<const P: u64> AddAssign<Fp<P>> for Fp<P> {
        fn add_assign(&mut self, rhs: Fp<P>) {
            self.value += rhs.value;
            if self.value >= P {
                self.value -= P;
            }
        }
    }
    impl<const P: u64> SubAssign<Fp<P>> for Fp<P> {
        fn sub_assign(&mut self, rhs: Fp<P>) {
            if self.value < rhs.value {
                self.value += P;
            }
            self.value -= rhs.value;
        }
    }
    impl<const P: u64> MulAssign<Fp<P>> for Fp<P> {
        fn mul_assign(&mut self, rhs: Fp<P>) {
            self.value = self.value * rhs.value % P;
        }
    }
    #[allow(clippy::suspicious_op_assign_impl)]
    impl<const P: u64> DivAssign<Fp<P>> for Fp<P> {
        fn div_assign(&mut self, rhs: Fp<P>) {
            *self *= rhs.inv()
        }
    }
    macro_rules! fp_forward_ops {
        ($(
            $trait:ident,
            $trait_assign:ident,
            $fn:ident,
            $fn_assign:ident,
        )*) => {$(
            impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> {
                fn $fn_assign(&mut self, rhs: &Fp<P>) {
                    self.$fn_assign(*rhs);
                }
            }
            impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> {
                type Output = Fp<P>;
                fn $fn(mut self, rhs: T) -> Self::Output {
                    self.$fn_assign(rhs.into());
                    self
                }
            }
            impl<const P: u64> $trait<&Fp<P>> for Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: &Fp<P>) -> Self::Output {
                    self.$fn(*rhs)
                }
            }
            impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: T) -> Self::Output {
                    (*self).$fn(rhs.into())
                }
            }
            impl<const P: u64> $trait<&Fp<P>> for &Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: &Fp<P>) -> Self::Output {
                    (*self).$fn(*rhs)
                }
            }
        )*};
    }
    fp_forward_ops! {
        Add, AddAssign, add, add_assign,
        Sub, SubAssign, sub, sub_assign,
        Mul, MulAssign, mul, mul_assign,
        Div, DivAssign, div, div_assign,
    }
    impl<const P: u64> Neg for Fp<P> {
        type Output = Fp<P>;

        fn neg(mut self) -> Self::Output {
            if self.value > 0 {
                self.value = P - self.value;
            }
            self
        }
    }
    impl<const P: u64> Sum for Fp<P> {
        fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(0), |acc, x| acc + x)
        }
    }
    impl<'a, const P: u64> Sum<&'a Self> for Fp<P> {
        fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.copied().sum()
        }
    }
    impl<const P: u64> Product for Fp<P> {
        fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(1), |acc, x| acc * x)
        }
    }
    impl<'a, const P: u64> Product<&'a Self> for Fp<P> {
        fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.copied().product()
        }
    }
}
// }}}
// splay_tree {{{
// https://ngtkana.github.io/ac-adapter-rs/splay_tree/index.html

#[allow(dead_code)]
mod splay_tree {
    mod node {
        use super::LazyOps;
        use std::cmp::Ordering;
        use std::fmt::Debug;
        use std::mem::replace;
        use std::mem::swap;
        use std::ptr::null_mut;
        use std::ptr::{self};
        #[allow(unused_must_use)]
        pub fn deep_free<O: LazyOps>(root: *mut Node<O>) {
            if !root.is_null() {
                unsafe {
                    deep_free((*root).left);
                    deep_free((*root).right);
                    Box::from_raw(root);
                }
            }
        }
        pub fn access_index<O: LazyOps>(mut root: &mut Node<O>, mut i: usize) -> &mut Node<O> {
            loop {
                root.push();
                if let Some(left) = unsafe { root.left.as_mut() } {
                    left.push();
                }
                if let Some(right) = unsafe { root.right.as_mut() } {
                    right.push();
                }
                let lsize = unsafe { root.left.as_ref() }.map_or(0, |left| left.len);
                root = match i.cmp(&lsize) {
                    Ordering::Less => unsafe { root.left.as_mut() }.unwrap(),
                    Ordering::Equal => {
                        root.splay();
                        return root;
                    }
                    Ordering::Greater => {
                        i -= lsize + 1;
                        unsafe { root.right.as_mut() }.unwrap()
                    }
                };
            }
        }
        pub fn merge<O: LazyOps>(left: *mut Node<O>, right: *mut Node<O>) -> *mut Node<O> {
            let ans = if let Some(mut left) = unsafe { left.as_mut() } {
                if let Some(right) = unsafe { right.as_mut() } {
                    left = access_index(left, left.len - 1);
                    left.push();
                    left.right = right;
                    right.parent = left;
                    left.update();
                }
                left
            } else {
                right
            };
            ans
        }
        pub fn split_at<O: LazyOps>(root: *mut Node<O>, at: usize) -> [*mut Node<O>; 2] {
            if let Some(mut root) = unsafe { root.as_mut() } {
                if at == root.len {
                    [root, null_mut()]
                } else if at == 0 {
                    [null_mut(), root]
                } else {
                    root = access_index(root, at);
                    root.push();
                    let left = replace(&mut root.left, null_mut());
                    if let Some(left) = unsafe { left.as_mut() } {
                        left.parent = null_mut();
                        root.update();
                    }
                    [left, root]
                }
            } else {
                [null_mut(), null_mut()]
            }
        }
        pub struct Node<O: LazyOps> {
            pub left: *mut Self,
            pub right: *mut Self,
            pub parent: *mut Self,
            pub len: usize,
            pub rev: bool,
            pub value: O::Value,
            pub acc: O::Acc,
            pub lazy: Option<O::Lazy>,
        }
        impl<O: LazyOps> Node<O> {
            pub fn new(value: O::Value) -> Self {
                Node {
                    left: null_mut(),
                    right: null_mut(),
                    parent: null_mut(),
                    len: 1,
                    rev: false,
                    acc: O::proj(&value),
                    value,
                    lazy: None,
                }
            }

            pub fn dump(&self)
            where
                O::Value: Debug,
                O::Acc: Debug,
                O::Lazy: Debug,
            {
                if let Some(left) = unsafe { self.left.as_ref() } {
                    left.dump();
                }
                println!(
                    "{:?}: parent = {:?},  left = {:?}, right = {:?}, len = {}, rev = {}, value = \
                     {:?}, acc = {:?}, lazy = {:?}",
                    self as *const _,
                    self.parent,
                    self.left,
                    self.right,
                    self.len,
                    self.rev,
                    self.value,
                    self.acc,
                    self.lazy
                );
                if let Some(right) = unsafe { self.right.as_ref() } {
                    right.dump();
                }
            }

            pub fn update(&mut self) {
                self.len = 1;
                self.acc = O::proj(&self.value);
                if let Some(left) = unsafe { self.left.as_mut() } {
                    left.push();
                    self.len += left.len;
                    self.acc = O::op(&left.acc, &self.acc);
                }
                if let Some(right) = unsafe { self.right.as_mut() } {
                    right.push();
                    self.len += right.len;
                    self.acc = O::op(&self.acc, &right.acc);
                }
            }

            pub fn push(&mut self) {
                if let Some(lazy) = self.lazy.take() {
                    O::act_value(&lazy, &mut self.value);
                    O::act_acc(&lazy, &mut self.acc);
                    if let Some(left) = unsafe { self.left.as_mut() } {
                        O::compose_to_option(&lazy, &mut left.lazy);
                    }
                    if let Some(right) = unsafe { self.right.as_mut() } {
                        O::compose_to_option(&lazy, &mut right.lazy);
                    }
                }
                if replace(&mut self.rev, false) {
                    swap(&mut self.left, &mut self.right);
                    if let Some(left) = unsafe { self.left.as_mut() } {
                        left.rev ^= true;
                    }
                    if let Some(right) = unsafe { self.right.as_mut() } {
                        right.rev ^= true;
                    }
                }
            }

            pub fn rotate(&mut self) {
                let p = unsafe { &mut *self.parent };
                let g = p.parent;
                self.push();
                if ptr::eq(self, p.left) {
                    p.left = self.right;
                    if let Some(c) = unsafe { p.left.as_mut() } {
                        c.parent = p;
                    }
                    self.right = p;
                } else {
                    p.right = self.left;
                    if let Some(c) = unsafe { p.right.as_mut() } {
                        c.parent = p;
                    }
                    self.left = p;
                }
                p.parent = self;
                self.parent = g;
                if let Some(g) = unsafe { g.as_mut() } {
                    if ptr::eq(p, g.left) {
                        g.left = self;
                    } else {
                        g.right = self;
                    }
                }
                p.update();
                self.update();
            }

            pub fn splay(&mut self) {
                while let Some(p) = unsafe { self.parent.as_mut() } {
                    if let Some(g) = unsafe { p.parent.as_mut() } {
                        if ptr::eq(self, p.left) == ptr::eq(p, g.left) {
                            p.rotate();
                        } else {
                            self.rotate();
                        }
                    }
                    self.rotate();
                }
            }
        }
    }
    use self::node::access_index;
    use self::node::deep_free;
    use self::node::merge;
    use self::node::split_at;
    use self::node::Node;
    use std::cell::Cell;
    use std::cmp::Ordering;
    use std::fmt::Debug;
    use std::hash::Hash;
    use std::iter::FromIterator;
    use std::marker::PhantomData;
    use std::ops::Bound;
    use std::ops::Deref;
    use std::ops::DerefMut;
    use std::ops::Index;
    use std::ops::Range;
    use std::ops::RangeBounds;
    use std::ptr::null_mut;
    pub trait Value: Sized + Debug + Clone {}
    impl<T: Sized + Debug + Clone> Value for T {}
    pub struct Nop<T: Value>(PhantomData<fn(T) -> T>);
    impl<T: Value> LazyOps for Nop<T> {
        type Acc = ();
        type Lazy = ();
        type Value = T;

        fn proj(_value: &Self::Value) -> Self::Acc {}

        fn op(&(): &Self::Acc, &(): &Self::Acc) -> Self::Acc {}

        fn act_value(&(): &Self::Lazy, _value: &mut Self::Value) {}

        fn act_acc(&(): &Self::Lazy, &mut (): &mut Self::Acc) {}

        fn compose(&(): &Self::Lazy, &mut (): &mut Self::Lazy) {}
    }
    pub trait Ops {
        type Value: Value;
        type Acc: Value;
        fn proj(value: &Self::Value) -> Self::Acc;
        fn op(lhs: &Self::Acc, rhs: &Self::Acc) -> Self::Acc;
    }
    pub struct NoLazy<O>(PhantomData<fn(O) -> O>);
    impl<O: Ops> LazyOps for NoLazy<O> {
        type Acc = O::Acc;
        type Lazy = ();
        type Value = O::Value;

        fn proj(value: &Self::Value) -> Self::Acc {
            O::proj(value)
        }

        fn op(lhs: &Self::Acc, rhs: &Self::Acc) -> Self::Acc {
            O::op(lhs, rhs)
        }

        fn act_value(&(): &Self::Lazy, _value: &mut Self::Value) {}

        fn act_acc(&(): &Self::Lazy, _acc: &mut Self::Acc) {}

        fn compose(&(): &Self::Lazy, &mut (): &mut Self::Lazy) {}
    }
    pub trait LazyOps {
        type Value: Value;
        type Acc: Value;
        type Lazy: Value;
        fn proj(value: &Self::Value) -> Self::Acc;
        fn op(lhs: &Self::Acc, rhs: &Self::Acc) -> Self::Acc;
        fn act_value(lazy: &Self::Lazy, value: &mut Self::Value);
        fn act_acc(lazy: &Self::Lazy, acc: &mut Self::Acc);
        fn compose(upper: &Self::Lazy, lower: &mut Self::Lazy);
        fn compose_to_option(upper: &Self::Lazy, lower: &mut Option<Self::Lazy>) {
            match lower {
                None => *lower = Some(upper.clone()),
                Some(lower) => Self::compose(upper, lower),
            }
        }
    }
    pub struct SplayTree<O: LazyOps>(Cell<*mut Node<O>>);
    impl<O: LazyOps> SplayTree<O> {
        pub fn new() -> Self {
            Self(Cell::new(null_mut()))
        }

        pub fn is_empty(&self) -> bool {
            self.0.get().is_null()
        }

        pub fn len(&self) -> usize {
            unsafe { self.0.get().as_ref() }.map_or(0, |root| root.len)
        }

        pub fn insert(&mut self, at: usize, value: O::Value) {
            if self.len() < at {
                splay_tree_index_out_of_range_fail(at, self.len());
            }
            let [left, right] = split_at(self.0.get(), at);
            let node = Box::leak(Box::new(Node::new(value)));
            self.0.set(merge(merge(left, node), right));
        }

        pub fn delete(&mut self, at: usize) -> O::Value {
            if self.len() <= at {
                splay_tree_index_out_of_range_fail(at, self.len());
            }
            let [lc, r] = split_at(self.0.get(), at + 1);
            let [l, c] = split_at(lc, at);
            let ans = unsafe { Box::from_raw(c) }.value;
            self.0.set(merge(l, r));
            ans
        }

        pub fn reverse(&mut self, range: impl RangeBounds<usize>) {
            let Range { start, end } = into_range(self.len(), range);
            let [lc, r] = split_at(self.0.get(), end);
            let [l, c] = split_at(lc, start);
            if let Some(c) = unsafe { c.as_mut() } {
                c.rev ^= true;
                c.push();
            }
            self.0.set(merge(merge(l, c), r));
        }

        pub fn fold(&self, range: impl RangeBounds<usize>) -> Option<O::Acc> {
            let Range { start, end } = into_range(self.len(), range);
            let [lc, r] = split_at(self.0.get(), end);
            let [l, c] = split_at(lc, start);
            let ans = unsafe { c.as_mut() }.map(|c| {
                c.update();
                c.acc.clone()
            });
            self.0.set(merge(merge(l, c), r));
            ans
        }

        pub fn act(&mut self, range: impl RangeBounds<usize>, lazy: O::Lazy) {
            let Range { start, end } = into_range(self.len(), range);
            let [lc, r] = split_at(self.0.get(), end);
            let [l, c] = split_at(lc, start);
            if let Some(c) = unsafe { c.as_mut() } {
                c.lazy = Some(lazy);
                c.push();
            }
            self.0.set(merge(merge(l, c), r));
        }

        pub fn get(&self, i: usize) -> Option<&O::Value> {
            if self.len() <= i {
                return None;
            }
            let mut root = unsafe { self.0.get().as_mut() }.unwrap();
            root = access_index(root, i);
            self.0.set(root);
            let ans = &root.value;
            Some(ans)
        }

        pub fn entry(&mut self, i: usize) -> Option<Entry<'_, O>> {
            if self.len() <= i {
                return None;
            }
            let mut root = unsafe { self.0.get().as_mut() }.unwrap();
            root = access_index(root, i);
            self.0.set(root);
            Some(Entry(self))
        }

        pub fn split_off(&mut self, at: usize) -> Self {
            if self.len() < at {
                splay_tree_index_out_of_range_fail(at, self.len());
            }
            let [left, right] = split_at(self.0.get(), at);
            self.0.set(left);
            Self(Cell::new(right))
        }

        pub fn append(&mut self, right: &Self) {
            let root = merge(self.0.get(), right.0.get());
            self.0.set(root);
            right.0.set(null_mut());
        }

        pub fn iter(&self) -> Iter<'_, O> {
            Iter {
                splay: self,
                start: 0,
                end: self.len(),
            }
        }

        pub fn range(&self, range: impl RangeBounds<usize>) -> Iter<'_, O> {
            let Range { start, end } = into_range(self.len(), range);
            Iter {
                splay: self,
                start,
                end,
            }
        }

        pub fn dump(&self) {
            println!("    === start dump ===    ");
            match unsafe { self.0.get().as_ref() } {
                None => println!("empty"),
                Some(root) => root.dump(),
            }
            println!("    ===  end  dump ===    ");
        }
    }
    impl<O: LazyOps> FromIterator<O::Value> for SplayTree<O> {
        fn from_iter<T: IntoIterator<Item = O::Value>>(iter: T) -> Self {
            let mut iter = iter.into_iter();
            let mut root = match iter.next() {
                None => return Self::new(),
                Some(value) => Box::leak(Box::new(Node::new(value))),
            };
            for value in iter {
                let node = Box::leak(Box::new(Node::new(value)));
                root.parent = node;
                node.left = root;
                node.update();
                root = node;
            }
            Self(Cell::new(root))
        }
    }
    impl<'a, O: LazyOps> IntoIterator for &'a SplayTree<O> {
        type IntoIter = Iter<'a, O>;
        type Item = &'a O::Value;

        fn into_iter(self) -> Self::IntoIter {
            self.iter()
        }
    }
    impl<O: LazyOps> Debug for SplayTree<O> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            f.debug_list().entries(self.iter()).finish()
        }
    }
    impl<O: LazyOps> Clone for SplayTree<O> {
        fn clone(&self) -> Self {
            self.iter().cloned().collect()
        }
    }
    impl<O: LazyOps> Default for SplayTree<O> {
        fn default() -> Self {
            Self(Cell::new(null_mut()))
        }
    }
    impl<O: LazyOps> PartialEq for SplayTree<O>
    where
        O::Value: PartialEq,
    {
        fn eq(&self, other: &Self) -> bool {
            self.len() == other.len() && self.iter().zip(other.iter()).all(|(x, y)| x == y)
        }
    }
    impl<O: LazyOps> Eq for SplayTree<O> where O::Value: Eq {}
    impl<O: LazyOps> PartialOrd for SplayTree<O>
    where
        O::Value: PartialOrd,
    {
        fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
            for (x, y) in self.iter().zip(other.iter()) {
                match x.partial_cmp(y) {
                    Some(Ordering::Equal) => (),
                    non_eq => return non_eq,
                }
            }
            self.len().partial_cmp(&other.len())
        }
    }
    impl<O: LazyOps> Ord for SplayTree<O>
    where
        O::Value: Ord,
    {
        fn cmp(&self, other: &Self) -> Ordering {
            for (x, y) in self.iter().zip(other.iter()) {
                match x.cmp(y) {
                    Ordering::Equal => (),
                    non_eq => return non_eq,
                }
            }
            self.len().cmp(&other.len())
        }
    }
    impl<O: LazyOps> Hash for SplayTree<O>
    where
        O::Value: Hash,
    {
        fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
            self.iter().for_each(|x| x.hash(state))
        }
    }
    impl<O: LazyOps> Index<usize> for SplayTree<O> {
        type Output = O::Value;

        fn index(&self, index: usize) -> &Self::Output {
            if self.len() <= index {
                splay_tree_index_out_of_range_fail(index, self.len());
            }
            self.get(index).unwrap()
        }
    }
    pub struct Iter<'a, O: LazyOps> {
        splay: &'a SplayTree<O>,
        start: usize,
        end: usize,
    }
    impl<'a, O: LazyOps> Iterator for Iter<'a, O> {
        type Item = &'a O::Value;

        fn next(&mut self) -> Option<Self::Item> {
            if self.start == self.end {
                None
            } else {
                let ans = self.splay.get(self.start).unwrap();
                self.start += 1;
                Some(ans)
            }
        }
    }
    impl<'a, O: LazyOps> DoubleEndedIterator for Iter<'a, O> {
        fn next_back(&mut self) -> Option<Self::Item> {
            if self.start == self.end {
                None
            } else {
                self.end -= 1;
                let ans = self.splay.get(self.end).unwrap();
                Some(ans)
            }
        }
    }
    pub struct Entry<'a, O: LazyOps>(&'a mut SplayTree<O>);
    impl<O: LazyOps> Deref for Entry<'_, O> {
        type Target = O::Value;

        fn deref(&self) -> &Self::Target {
            &unsafe { &*self.0 .0.get() }.value
        }
    }
    impl<O: LazyOps> DerefMut for Entry<'_, O> {
        fn deref_mut(&mut self) -> &mut Self::Target {
            &mut unsafe { &mut *self.0 .0.get() }.value
        }
    }
    impl<O: LazyOps> Drop for SplayTree<O> {
        fn drop(&mut self) {
            deep_free(self.0.get());
        }
    }
    fn into_range(len: usize, range: impl RangeBounds<usize>) -> Range<usize> {
        let start = match range.start_bound() {
            Bound::Included(&start) => start,
            Bound::Excluded(&start) => start - 1,
            Bound::Unbounded => 0,
        };
        let end = match range.end_bound() {
            Bound::Included(&end) => end + 1,
            Bound::Excluded(&end) => end,
            Bound::Unbounded => len,
        };
        if len < start {
            splay_tree_start_index_len_fail(start, len);
        }
        if len < end {
            splay_tree_end_index_len_fail(end, len);
        }
        if start > end {
            splay_tree_index_order_fail(start, end)
        }
        start..end
    }
    fn splay_tree_index_out_of_range_fail(index: usize, len: usize) -> ! {
        panic!(
            "range index {} out of range for splay tree of length {}",
            index, len
        );
    }
    fn splay_tree_start_index_len_fail(index: usize, len: usize) -> ! {
        panic!(
            "range start index {} out of range for splay tree of length {}",
            index, len
        );
    }
    fn splay_tree_end_index_len_fail(index: usize, len: usize) -> ! {
        panic!(
            "range end index {} out of range for splay tree of length {}",
            index, len
        );
    }
    fn splay_tree_index_order_fail(index: usize, end: usize) -> ! {
        panic!("splay tree index starts at {} but ends at {}", index, end);
    }
}
// }}}
0