問題一覧 > 通常問題

No.65 回数の期待値の練習

レベル : / 実行時間制限 : 1ケース 5.000秒 / メモリ制限 : 512 MB / 小数誤差許容問題 絶対誤差または相対誤差が102 以下。ただし、ジャッジ側の都合で500桁未満にしてください
タグ : / 解いたユーザー数 356
作問者 : nmnmnmnmnmnmnmnmnmnmnmnmnmnm
12 ProblemId : 84 / 出題時の順位表 / 自分の提出
問題文最終更新日: 2020-09-02 19:31:01

問題文

1個のサイコロを何回か振って目の合計をK以上にしたい。
サイコロを振る回数の期待値を求めよ。

なお、今回のサイコロの場合に回数の期待値E(x)の公式は以下であることが知られている
E(x) := これまでの目の合計が x のとき、合計が K に達するまでにあと振ることになる回数の期待値
E(x)=E(x+1)1/6+E(x+2)1/6+E(x+3)1/6+E(x+4)1/6+E(x+5)1/6+E(x+6)1/6+1

入力

K

Kは正の整数。1K20

出力

期待値を1行で出力せよ。なお、絶対誤差または相対誤差は0.01まで許容される。
最後に改行を忘れずに。

サンプル

サンプル1
入力
1
出力
1

x>=1のときE(x)=0であり、x=0のときE(0)=1である。
サイコロを1回振れば目の合計が1以上になることが期待できる。

サンプル2
入力
2
出力
1.16667

サンプル3
入力
3
出力
1.36111

サンプル4
入力
7
出力
2.52163

提出するには、Twitter 、GitHub、 Googleもしくは右上の雲マークをクリックしてアカウントを作成してください。