問題一覧 > 通常問題

No.1185 完全な3の倍数

レベル : / 実行時間制限 : 1ケース 2.000秒 / メモリ制限 : 512 MB / 通常問題
タグ : / 解いたユーザー数 150
作問者 : penguinmanpenguinman / テスター : RhoRho
8 ProblemId : 4875 / 出題時の順位表
問題文最終更新日: 2020-09-06 18:04:01

問題文

Penguinmanは $3$ の倍数が好きです。Penguinmanは暇だったので、より完全な $3$ の倍数なるものを定義し、それの個数を数えることにしました。
Penguinmanが定義した、整数 $X$ が「完全な $3$ の倍数である」とは、以下の $3$ つの条件をすべて満たすことを指します。
・$X$ は正である。 (13:16 追記)
・$X$ は $10$ 進表記で $2$ 桁以上の $3$ の倍数である。
・$X$ の $10$ 進表記での桁数を $D$ とする。任意の $i,j (0≤i<j < D)$ において、$10^i$ の位の数と $10^j$ の位の数の和が $3$ の倍数である。
このような整数は無限に存在するので、Penguinmanは $N$ 以下の完全な $3$ の倍数の個数を数えることにしましたが、あまりの数の多さに絶望しています。
仕方がないので、Penguinmanの代わりにその個数を数えてあげてください。

入力

$N$

・$10≤N≤10^9$
・$N$ は整数

出力

$N$ 以下の完全な $3$ の倍数の個数を $1$ 行に出力してください。

サンプル

サンプル1
入力
15
出力
2

$15$ 以下の完全な $3$ の倍数は $12$ と $15$ の $2$ つのみなので、 $2$ を出力します。

サンプル2
入力
300
出力
31

サンプル3
入力
100000
出力
1038

提出するには、Twitter 、GitHub、 Googleもしくは右上の雲マークをクリックしてアカウントを作成してください。