問題一覧 > 通常問題

No.2563 色ごとのグループ

レベル : / 実行時間制限 : 1ケース 2.000秒 / メモリ制限 : 512 MB / 標準ジャッジ問題
タグ : / 解いたユーザー数 191
作問者 : kusirakusirakusirakusira / テスター : deuteridayodeuteridayo 👑 AngrySadEightAngrySadEight Kyo_s_sKyo_s_s MagentorMagentor DeltaStructDeltaStruct loop0919loop0919 rotti_coderrotti_coder ragnaragna マベマス(mavemas_413)マベマス(mavemas_413) けんぴんけんぴん akiaki
2 ProblemId : 8680 / 出題時の順位表 / 自分の提出
問題文最終更新日: 2023-11-30 18:45:16

問題文

頂点に $1$ から $N$ の番号が、辺に $1$ から $M$ の番号が付いた $N$ 頂点 $M$ 辺の単純無向グラフが与えられます。
$i$ 番目 $(1 \leq i \leq M)$ の辺は頂点 $u_i$ と頂点 $v_i$ を結びます。
また、$i$ 番目 $(1 \leq i \leq N)$ の頂点は色 $C_i $ で塗られています。

くしらくんはこのグラフに対して、以下の操作を $0$ 回以上行うことができます。

  • $1 \leq a,b \leq N $ を満たす整数組 $(a,b)$ を選び、頂点 $a$ と 頂点 $b$ を結ぶ辺を追加する。

くしらくんの目的は、操作を行いこのグラフが以下の条件を満たすようにすることです。

  • $C_i = C_j$ であるすべての頂点のペア $(i, j)$ について, 頂点 $i$ から色が $C_i$ である頂点のみをたどることで頂点 $j$ に到達できる。
くしらくんが目標を達成するまでに行う必要のある操作の最小回数を答えてください。

制約

  • $ 1 \leq N \leq 2×10^5$
  • $ 0 \leq M \leq \mathrm{min} (2×10^5, N(N-1)/2)$
  • $ 1 \leq C_i \leq N$
  • $ 1 \leq u_i, v_i \leq N $
  • $ u_i \neq v_i $
  • $ i≠j \Rightarrow \{u_i, v_i\} \neq \{u_j, v_j\} $
  • 入力はすべて整数である

入力

$N\ M$
$C_1\ C_2\ \ldots\ C_N$
$u_1\ v_1$
$u_2\ v_2$
$\vdots$
$u_M\ v_M$

出力

答えを出力してください。

サンプル

サンプル1
入力
5 6
1 2 2 2 1
1 2
1 3
1 4
3 4
4 5
2 5
出力
2

頂点 $1-5$ 間、$2-3$ 間に辺を追加すればよいです。

サンプル2
入力
4 2
1 1 2 4
1 2
1 3
出力
0

操作を行わなくてよいこともあります。

サンプル3
入力
8 9
1 8 1 2 1 3 3 2
6 3
3 2
4 3
5 7
7 3
2 7
2 1
1 4
4 7
出力
4

提出するには、Twitter 、GitHub、 Googleもしくは右上の雲マークをクリックしてアカウントを作成してください。