結果
問題 | No.2836 Comment Out |
ユーザー |
![]() |
提出日時 | 2024-08-09 21:25:52 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 18,201 bytes |
コンパイル時間 | 2,599 ms |
コンパイル使用メモリ | 208,060 KB |
実行使用メモリ | 22,508 KB |
最終ジャッジ日時 | 2024-08-09 21:26:08 |
合計ジャッジ時間 | 5,222 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 29 WA * 23 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <memory>#include <numeric>#include <optional>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v<< ','; os << ']'; return os; }template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},tpl); return is; }template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {((os << args << ','), ...);}, tpl); return os << ')'; }template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os<< v << ','; os << '}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<'}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<','; os << '}'; return os; }template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for(auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET<< std::endl#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<__FILE__ << COLOR_RESET << std::endl : std::cerr)#else#define dbg(x) ((void)0)#define dbgif(cond, x) ((void)0)#endif#include <algorithm>#include <cassert>#include <deque>#include <fstream>#include <functional>#include <limits>#include <queue>#include <string>#include <tuple>#include <utility>#include <vector>template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1>struct shortest_path {int V, E;bool single_positive_weight;T wmin, wmax;std::vector<std::pair<int, T>> tos;std::vector<int> head;std::vector<std::tuple<int, int, T>> edges;void build_() {if (int(tos.size()) == E and int(head.size()) == V + 1) return;tos.resize(E);head.assign(V + 1, 0);for (const auto &e : edges) ++head[std::get<0>(e) + 1];for (int i = 0; i < V; ++i) head[i + 1] += head[i];auto cur = head;for (const auto &e : edges) {tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e));}}shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {}void add_edge(int s, int t, T w) {assert(0 <= s and s < V);assert(0 <= t and t < V);edges.emplace_back(s, t, w);++E;if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;wmin = std::min(wmin, w);wmax = std::max(wmax, w);}void add_bi_edge(int u, int v, T w) {add_edge(u, v, w);add_edge(v, u, w);}std::vector<T> dist;std::vector<int> prev;// Dijkstra algorithm// - Requirement: wmin >= 0// - Complexity: O(E log E)using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,std::greater<std::pair<T, int>>>;template <class Heap = Pque> void dijkstra(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF);prev.assign(V, INVALID);dist[s] = 0;Heap pq;pq.emplace(0, s);while (!pq.empty()) {T d;int v;std::tie(d, v) = pq.top();pq.pop();if (t == v) return;if (dist[v] < d) continue;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = d + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;pq.emplace(dnx, nx.first);}}}}// Dijkstra algorithm// - Requirement: wmin >= 0// - Complexity: O(V^2 + E)void dijkstra_vquad(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF);prev.assign(V, INVALID);dist[s] = 0;std::vector<char> fixed(V, false);while (true) {int r = INVALID;T dr = INF;for (int i = 0; i < V; i++) {if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];}if (r == INVALID or r == t) break;fixed[r] = true;int nxt;T dx;for (int e = head[r]; e < head[r + 1]; ++e) {std::tie(nxt, dx) = tos[e];if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;}}}// Bellman-Ford algorithm// - Requirement: no negative loop// - Complexity: O(VE)bool bellman_ford(int s, int nb_loop) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;for (int l = 0; l < nb_loop; l++) {bool upd = false;for (int v = 0; v < V; v++) {if (dist[v] == INF) continue;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;}}if (!upd) return true;}return false;}// Bellman-ford algorithm using deque// - Requirement: no negative loop// - Complexity: O(VE)void spfa(int s) {assert(0 <= s and s < V);build_();dist.assign(V, INF);prev.assign(V, INVALID);dist[s] = 0;std::deque<int> q;std::vector<char> in_queue(V);q.push_back(s), in_queue[s] = 1;while (!q.empty()) {int now = q.front();q.pop_front(), in_queue[now] = 0;for (int e = head[now]; e < head[now + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[now] + nx.second;int nxt = nx.first;if (dist[nxt] > dnx) {dist[nxt] = dnx;if (!in_queue[nxt]) {if (q.size() and dnx < dist[q.front()]) { // Small label first optimizationq.push_front(nxt);} else {q.push_back(nxt);}prev[nxt] = now, in_queue[nxt] = 1;}}}}}// 01-BFS// - Requirement: all weights must be 0 or w (positive constant).// - Complexity: O(V + E)void zero_one_bfs(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::vector<int> q(V * 4);int ql = V * 2, qr = V * 2;q[qr++] = s;while (ql < qr) {int v = q[ql++];if (v == t) return;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;if (nx.second) {q[qr++] = nx.first;} else {q[--ql] = nx.first;}}}}}// Dial's algorithm// - Requirement: wmin >= 0// - Complexity: O(wmax * V + E)void dial(int s, int t = INVALID) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::vector<std::vector<std::pair<int, T>>> q(wmax + 1);q[0].emplace_back(s, dist[s]);int ninq = 1;int cur = 0;T dcur = 0;for (; ninq; ++cur, ++dcur) {if (cur == wmax + 1) cur = 0;while (!q[cur].empty()) {int v = q[cur].back().first;T dnow = q[cur].back().second;q[cur].pop_back(), --ninq;if (v == t) return;if (dist[v] < dnow) continue;for (int e = head[v]; e < head[v + 1]; ++e) {const auto &nx = tos[e];T dnx = dist[v] + nx.second;if (dist[nx.first] > dnx) {dist[nx.first] = dnx, prev[nx.first] = v;int nxtcur = cur + int(nx.second);if (nxtcur >= int(q.size())) nxtcur -= q.size();q[nxtcur].emplace_back(nx.first, dnx), ++ninq;}}}}}// Solver for DAG// - Requirement: graph is DAG// - Complexity: O(V + E)bool dag_solver(int s) {assert(0 <= s and s < V);build_();dist.assign(V, INF), prev.assign(V, INVALID);dist[s] = 0;std::vector<int> indeg(V, 0);std::vector<int> q(V * 2);int ql = 0, qr = 0;q[qr++] = s;while (ql < qr) {int now = q[ql++];for (int e = head[now]; e < head[now + 1]; ++e) {const auto &nx = tos[e];++indeg[nx.first];if (indeg[nx.first] == 1) q[qr++] = nx.first;}}ql = qr = 0;q[qr++] = s;while (ql < qr) {int now = q[ql++];for (int e = head[now]; e < head[now + 1]; ++e) {const auto &nx = tos[e];--indeg[nx.first];if (dist[nx.first] > dist[now] + nx.second)dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;if (indeg[nx.first] == 0) q[qr++] = nx.first;}}return *max_element(indeg.begin(), indeg.end()) == 0;}// Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]// If not reachable to goal, return {}std::vector<int> retrieve_path(int goal) const {assert(int(prev.size()) == V);assert(0 <= goal and goal < V);if (dist[goal] == INF) return {};std::vector<int> ret{goal};while (prev[goal] != INVALID) {goal = prev[goal];ret.push_back(goal);}std::reverse(ret.begin(), ret.end());return ret;}void solve(int s, int t = INVALID) {if (wmin >= 0) {if (single_positive_weight) {zero_one_bfs(s, t);} else if (wmax <= 10) {dial(s, t);} else {if ((long long)V * V < (E << 4)) {dijkstra_vquad(s, t);} else {dijkstra(s, t);}}} else {bellman_ford(s, V);}}// Warshall-Floyd algorithm// - Requirement: no negative loop// - Complexity: O(E + V^3)std::vector<std::vector<T>> floyd_warshall() {build_();std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF));for (int i = 0; i < V; i++) {dist2d[i][i] = 0;for (const auto &e : edges) {int s = std::get<0>(e), t = std::get<1>(e);dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e));}}for (int k = 0; k < V; k++) {for (int i = 0; i < V; i++) {if (dist2d[i][k] == INF) continue;for (int j = 0; j < V; j++) {if (dist2d[k][j] == INF) continue;dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);}}}return dist2d;}void to_dot(std::string filename = "shortest_path") const {std::ofstream ss(filename + ".DOT");ss << "digraph{\n";build_();for (int i = 0; i < V; i++) {for (int e = head[i]; e < head[i + 1]; ++e) {ss << i << "->" << tos[e].first << "[label=" << tos[e].second << "];\n";}}ss << "}\n";ss.close();return;}};int main() {int N;cin >> N;vector<int> A(N);cin >> A;shortest_path<int> sp(N + 1);REP(i, N) {if (A.at(i) <= 1) sp.add_edge(N, i, 0);if (i and A.at(i - 1) + 1 >= A.at(i)) sp.add_edge(i - 1, i, 0);if (i + 1 < N and A.at(i + 1) + 1 >= A.at(i)) sp.add_edge(i + 1, i, 0);}sp.solve(N);REP(i, N) {if (sp.dist.at(i) > N * 100) {puts("No");return 0;}}puts("Yes");}