結果

問題 No.2836 Comment Out
ユーザー hitonanodehitonanode
提出日時 2024-08-09 21:27:23
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 25 ms / 2,000 ms
コード長 17,935 bytes
コンパイル時間 1,715 ms
コンパイル使用メモリ 183,128 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-08-09 21:27:34
合計ジャッジ時間 4,052 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 52
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r
    .first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r
    .first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end
    ()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<
    ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v
    << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},
    tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {
    ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os
    << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<
    ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';
    return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<
    '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<
    ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa
    .second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v
    .first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for
    (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9
    ;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET
    << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<
    __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif
#include <algorithm>
#include <cassert>
#include <deque>
#include <fstream>
#include <functional>
#include <limits>
#include <queue>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1>
struct shortest_path {
int V, E;
bool single_positive_weight;
T wmin, wmax;
std::vector<std::pair<int, T>> tos;
std::vector<int> head;
std::vector<std::tuple<int, int, T>> edges;
void build_() {
if (int(tos.size()) == E and int(head.size()) == V + 1) return;
tos.resize(E);
head.assign(V + 1, 0);
for (const auto &e : edges) ++head[std::get<0>(e) + 1];
for (int i = 0; i < V; ++i) head[i + 1] += head[i];
auto cur = head;
for (const auto &e : edges) {
tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e));
}
}
shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {}
void add_edge(int s, int t, T w) {
assert(0 <= s and s < V);
assert(0 <= t and t < V);
edges.emplace_back(s, t, w);
++E;
if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
wmin = std::min(wmin, w);
wmax = std::max(wmax, w);
}
void add_bi_edge(int u, int v, T w) {
add_edge(u, v, w);
add_edge(v, u, w);
}
std::vector<T> dist;
std::vector<int> prev;
// Dijkstra algorithm
// - Requirement: wmin >= 0
// - Complexity: O(E log E)
using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
std::greater<std::pair<T, int>>>;
template <class Heap = Pque> void dijkstra(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF);
prev.assign(V, INVALID);
dist[s] = 0;
Heap pq;
pq.emplace(0, s);
while (!pq.empty()) {
T d;
int v;
std::tie(d, v) = pq.top();
pq.pop();
if (t == v) return;
if (dist[v] < d) continue;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = d + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
pq.emplace(dnx, nx.first);
}
}
}
}
// Dijkstra algorithm
// - Requirement: wmin >= 0
// - Complexity: O(V^2 + E)
void dijkstra_vquad(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF);
prev.assign(V, INVALID);
dist[s] = 0;
std::vector<char> fixed(V, false);
while (true) {
int r = INVALID;
T dr = INF;
for (int i = 0; i < V; i++) {
if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
}
if (r == INVALID or r == t) break;
fixed[r] = true;
int nxt;
T dx;
for (int e = head[r]; e < head[r + 1]; ++e) {
std::tie(nxt, dx) = tos[e];
if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
}
}
}
// Bellman-Ford algorithm
// - Requirement: no negative loop
// - Complexity: O(VE)
bool bellman_ford(int s, int nb_loop) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
for (int l = 0; l < nb_loop; l++) {
bool upd = false;
for (int v = 0; v < V; v++) {
if (dist[v] == INF) continue;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
}
}
if (!upd) return true;
}
return false;
}
// Bellman-ford algorithm using deque
// - Requirement: no negative loop
// - Complexity: O(VE)
void spfa(int s) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF);
prev.assign(V, INVALID);
dist[s] = 0;
std::deque<int> q;
std::vector<char> in_queue(V);
q.push_back(s), in_queue[s] = 1;
while (!q.empty()) {
int now = q.front();
q.pop_front(), in_queue[now] = 0;
for (int e = head[now]; e < head[now + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[now] + nx.second;
int nxt = nx.first;
if (dist[nxt] > dnx) {
dist[nxt] = dnx;
if (!in_queue[nxt]) {
if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
q.push_front(nxt);
} else {
q.push_back(nxt);
}
prev[nxt] = now, in_queue[nxt] = 1;
}
}
}
}
}
// 01-BFS
// - Requirement: all weights must be 0 or w (positive constant).
// - Complexity: O(V + E)
void zero_one_bfs(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::vector<int> q(V * 4);
int ql = V * 2, qr = V * 2;
q[qr++] = s;
while (ql < qr) {
int v = q[ql++];
if (v == t) return;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
if (nx.second) {
q[qr++] = nx.first;
} else {
q[--ql] = nx.first;
}
}
}
}
}
// Dial's algorithm
// - Requirement: wmin >= 0
// - Complexity: O(wmax * V + E)
void dial(int s, int t = INVALID) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::vector<std::vector<std::pair<int, T>>> q(wmax + 1);
q[0].emplace_back(s, dist[s]);
int ninq = 1;
int cur = 0;
T dcur = 0;
for (; ninq; ++cur, ++dcur) {
if (cur == wmax + 1) cur = 0;
while (!q[cur].empty()) {
int v = q[cur].back().first;
T dnow = q[cur].back().second;
q[cur].pop_back(), --ninq;
if (v == t) return;
if (dist[v] < dnow) continue;
for (int e = head[v]; e < head[v + 1]; ++e) {
const auto &nx = tos[e];
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
int nxtcur = cur + int(nx.second);
if (nxtcur >= int(q.size())) nxtcur -= q.size();
q[nxtcur].emplace_back(nx.first, dnx), ++ninq;
}
}
}
}
}
// Solver for DAG
// - Requirement: graph is DAG
// - Complexity: O(V + E)
bool dag_solver(int s) {
assert(0 <= s and s < V);
build_();
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::vector<int> indeg(V, 0);
std::vector<int> q(V * 2);
int ql = 0, qr = 0;
q[qr++] = s;
while (ql < qr) {
int now = q[ql++];
for (int e = head[now]; e < head[now + 1]; ++e) {
const auto &nx = tos[e];
++indeg[nx.first];
if (indeg[nx.first] == 1) q[qr++] = nx.first;
}
}
ql = qr = 0;
q[qr++] = s;
while (ql < qr) {
int now = q[ql++];
for (int e = head[now]; e < head[now + 1]; ++e) {
const auto &nx = tos[e];
--indeg[nx.first];
if (dist[nx.first] > dist[now] + nx.second)
dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;
if (indeg[nx.first] == 0) q[qr++] = nx.first;
}
}
return *max_element(indeg.begin(), indeg.end()) == 0;
}
// Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]
// If not reachable to goal, return {}
std::vector<int> retrieve_path(int goal) const {
assert(int(prev.size()) == V);
assert(0 <= goal and goal < V);
if (dist[goal] == INF) return {};
std::vector<int> ret{goal};
while (prev[goal] != INVALID) {
goal = prev[goal];
ret.push_back(goal);
}
std::reverse(ret.begin(), ret.end());
return ret;
}
void solve(int s, int t = INVALID) {
if (wmin >= 0) {
if (single_positive_weight) {
zero_one_bfs(s, t);
} else if (wmax <= 10) {
dial(s, t);
} else {
if ((long long)V * V < (E << 4)) {
dijkstra_vquad(s, t);
} else {
dijkstra(s, t);
}
}
} else {
bellman_ford(s, V);
}
}
// Warshall-Floyd algorithm
// - Requirement: no negative loop
// - Complexity: O(E + V^3)
std::vector<std::vector<T>> floyd_warshall() {
build_();
std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF));
for (int i = 0; i < V; i++) {
dist2d[i][i] = 0;
for (const auto &e : edges) {
int s = std::get<0>(e), t = std::get<1>(e);
dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e));
}
}
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
if (dist2d[i][k] == INF) continue;
for (int j = 0; j < V; j++) {
if (dist2d[k][j] == INF) continue;
dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
}
}
}
return dist2d;
}
void to_dot(std::string filename = "shortest_path") const {
std::ofstream ss(filename + ".DOT");
ss << "digraph{\n";
build_();
for (int i = 0; i < V; i++) {
for (int e = head[i]; e < head[i + 1]; ++e) {
ss << i << "->" << tos[e].first << "[label=" << tos[e].second << "];\n";
}
}
ss << "}\n";
ss.close();
return;
}
};
int main() {
int N;
cin >> N;
vector<int> A(N);
cin >> A;
int n0 = count(ALL(A), 0);
int n1 = count(ALL(A), 1);
if (n0 or n1) {
puts("Yes");
} else {
puts("No");
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0