結果
問題 | No.2838 Diagonals |
ユーザー | Aeren |
提出日時 | 2024-08-09 22:22:52 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 30 ms / 2,000 ms |
コード長 | 12,311 bytes |
コンパイル時間 | 3,039 ms |
コンパイル使用メモリ | 259,964 KB |
実行使用メモリ | 18,316 KB |
最終ジャッジ日時 | 2024-08-09 22:22:57 |
合計ジャッジ時間 | 4,157 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
// #include <bits/allocator.h> // Temp fix for gcc13 global pragma // #pragma GCC target("avx2,bmi2,popcnt,lzcnt") // #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif #ifdef LOCAL #include "Debug.h" #else #define debug_endl() 42 #define debug(...) 42 #define debug2(...) 42 #define debugbin(...) 42 #endif template<class data_t, data_t _mod> struct modular_fixed_base{ #define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>) #define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>) static_assert(IS_UNSIGNED(data_t)); static_assert(_mod >= 1); static constexpr bool VARIATE_MOD_FLAG = false; static constexpr data_t mod(){ return _mod; } template<class T> static vector<modular_fixed_base> precalc_power(T base, int SZ){ vector<modular_fixed_base> res(SZ + 1, 1); for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base; return res; } template<class T> static vector<modular_fixed_base> precalc_geometric_sum(T base, int SZ){ vector<modular_fixed_base> res(SZ + 1); for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base + base; return res; } static vector<modular_fixed_base> _INV; static void precalc_inverse(int SZ){ if(_INV.empty()) _INV.assign(2, 1); for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]); } // _mod must be a prime static modular_fixed_base _primitive_root; static modular_fixed_base primitive_root(){ if(_primitive_root) return _primitive_root; if(_mod == 2) return _primitive_root = 1; if(_mod == 998244353) return _primitive_root = 3; data_t divs[20] = {}; divs[0] = 2; int cnt = 1; data_t x = (_mod - 1) / 2; while(x % 2 == 0) x /= 2; for(auto i = 3; 1LL * i * i <= x; i += 2){ if(x % i == 0){ divs[cnt ++] = i; while(x % i == 0) x /= i; } } if(x > 1) divs[cnt ++] = x; for(auto g = 2; ; ++ g){ bool ok = true; for(auto i = 0; i < cnt; ++ i){ if(modular_fixed_base(g).power((_mod - 1) / divs[i]) == 1){ ok = false; break; } } if(ok) return _primitive_root = g; } } constexpr modular_fixed_base(){ } modular_fixed_base(const double &x){ data = _normalize(llround(x)); } modular_fixed_base(const long double &x){ data = _normalize(llround(x)); } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){ int sign = x >= 0 ? 1 : -1; data_t v = _mod <= sign * x ? sign * x % _mod : sign * x; if(sign == -1 && v) v = _mod - v; return v; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; } modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; } modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); } modular_fixed_base &operator++(){ return *this += 1; } modular_fixed_base &operator--(){ return *this += _mod - 1; } modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; } modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; } modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); } modular_fixed_base &operator*=(const modular_fixed_base &rhs){ if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod; else if constexpr(is_same_v<data_t, unsigned long long>){ long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data); data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod); } else data = _normalize(data * rhs.data); return *this; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &inplace_power(T e){ if(e == 0) return *this = 1; if(data == 0) return *this = {}; if(data == 1 || e == 1) return *this; if(data == mod() - 1) return e % 2 ? *this : *this = -*this; if(e < 0) *this = 1 / *this, e = -e; if(e == 1) return *this; modular_fixed_base res = 1; for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this; return *this = res; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base power(T e) const{ return modular_fixed_base(*this).inplace_power(e); } // c + c * x + ... + c * x^{e-1} template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &inplace_geometric_sum(T e, modular_fixed_base c = 1){ if(e == 0) return *this = {}; if(data == 0) return *this = {}; if(data == 1) return *this = c * e; if(e == 1) return *this = c; if(data == mod() - 1) return *this = c * abs(e % 2); modular_fixed_base res = 0; if(e < 0) return *this = geometric_sum(-e + 1, -*this) - 1; if(e == 1) return *this = c * *this; for(; e; c *= 1 + *this, *this *= *this, e >>= 1) if(e & 1) res += c, c *= *this; return *this = res; } // c + c * x + ... + c * x^{e-1} template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base geometric_sum(T e, modular_fixed_base c = 1) const{ return modular_fixed_base(*this).inplace_geometric_sum(e, c); } modular_fixed_base &operator/=(const modular_fixed_base &otr){ make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1; if(a < _INV.size()) return *this *= _INV[a]; while(a){ make_signed_t<data_t> t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return *this *= u; } #define ARITHMETIC_OP(op, apply_op)\ modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; } ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=) #undef ARITHMETIC_OP #define COMPARE_OP(op)\ bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; } COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=) #undef COMPARE_OP friend istream &operator>>(istream &in, modular_fixed_base &number){ long long x; in >> x; number.data = modular_fixed_base::_normalize(x); return in; } //#define _SHOW_FRACTION friend ostream &operator<<(ostream &out, const modular_fixed_base &number){ out << number.data; #if defined(LOCAL) && defined(_SHOW_FRACTION) cerr << "("; for(auto d = 1; ; ++ d){ if((number * d).data <= 1000000){ cerr << (number * d).data; if(d != 1) cerr << "/" << d; break; } else if((-number * d).data <= 1000000){ cerr << "-" << (-number * d).data; if(d != 1) cerr << "/" << d; break; } } cerr << ")"; #endif return out; } data_t data = 0; #undef _SHOW_FRACTION #undef IS_INTEGRAL #undef IS_UNSIGNED }; template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV; template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root; const unsigned int mod = (119 << 23) + 1; // 998244353 // const unsigned int mod = 1e9 + 7; // 1000000007 // const unsigned int mod = 1e9 + 9; // 1000000009 // const unsigned long long mod = (unsigned long long)1e18 + 9; using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>; modular operator""_m(const char *x){ return stoll(x); } template<bool Enable_small_to_large = true> struct disjoint_set_2d{ #ifdef LOCAL #define ASSERT(x) assert(x) #else #define ASSERT(x) 42 #endif int n, m, _group_count; vector<int> p; vector<list<array<int, 2>>> group; disjoint_set_2d(){ } disjoint_set_2d(int n, int m): n(n), m(m), _group_count(n * m), p(n * m, -1), group(n * m){ ASSERT(n >= 0); for(auto x = 0; x < n; ++ x) for(auto y = 0; y < m; ++ y) group[m * x + y] = {{x, y}}; } int _root(int u){ ASSERT(0 <= u && u < n * m); return p[u] < 0 ? u : p[u] = _root(p[u]); } array<int, 2> root(int ux, int uy){ ASSERT(0 <= min(ux, uy) && ux < n && uy < m); int u = m * ux + uy; u = p[u] < 0 ? u : p[u] = _root(p[u]); return {u / m, u % m}; } bool share(int ux, int uy, int vx, int vy){ ASSERT(0 <= min({ux, uy, vx, vy}) && ux < n && uy < m && vx < n && vy < m); return _root(m * ux + uy) == _root(m * vx + vy); } int size(int ux, int uy){ ASSERT(0 <= min(ux, uy) && ux < n && uy < m); return -p[_root(m * ux + uy)]; } bool merge(int ux, int uy, int vx, int vy){ ASSERT(0 <= min({ux, uy, vx, vy}) && ux < n && uy < m && vx < n && vy < m); int u = _root(m * ux + uy), v = _root(m * vx + vy); if(u == v) return false; -- _group_count; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v); p[u] += p[v], p[v] = u; group[u].splice(group[u].end(), group[v]); return true; } bool merge(int ux, int uy, int vx, int vy, auto act){ ASSERT(0 <= min({ux, uy, vx, vy}) && ux < n && uy < m && vx < n && vy < m); int u = _root(m * ux + uy), v = _root(m * vx + vy); if(u == v) return false; -- _group_count; bool swapped = false; if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true; act(u, v, swapped); p[u] += p[v], p[v] = u; group[u].splice(group[u].end(), group[v]); return true; } int group_count() const{ return _group_count; } const list<array<int, 2>> &group_of(int ux, int uy){ ASSERT(0 <= min(ux, uy) && ux < n && uy < m); int u = m * ux + uy; return group[_root(ux, uy)]; } vector<vector<array<int, 2>>> group_up(){ vector<vector<array<int, 2>>> g(n * m); for(auto x = 0; x < n; ++ x) for(auto y = 0; y < m; ++ y) g[_root(m * x + y)].push_back({x, y}); g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end()); return g; } void clear(){ _group_count = n * m; fill(p.begin(), p.end(), -1); for(auto x = 0; x < n; ++ x) for(auto y = 0; y < m; ++ y) group[m * x + y] = {{x, y}}; } friend ostream &operator<<(ostream &out, disjoint_set_2d dsu){ auto gs = dsu.group_up(); out << "{\n"; if(!gs.empty()) for(auto i = 0; i < (int)gs.size(); ++ i){ out << " {"; for(auto j = 0; j < (int)gs[i].size(); ++ j){ out << "{" << gs[i][j][0] << ", " << gs[i][j][1] << "}"; if(j + 1 < (int)gs[i].size()) out << ", "; } out << "}"; if(i + 1 < (int)gs.size()) out << ","; out << "\n"; } return out << "}"; } #undef ASSERT }; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n, m; cin >> n >> m; vector<string> a(n); copy_n(istream_iterator<string>(cin), n, a.begin()); disjoint_set_2d dsu(n, m); int cnt = 0; for(auto i = 0; i < n; ++ i){ for(auto j = 0; j < m; ++ j){ if(a[i][j] == '.'){ continue; } if(i == 0 || j == 0 || a[i - 1][j] == '.' || a[i][j - 1] == '.' || !dsu.share(i - 1, j, i, j - 1)){ cnt += 2; } else{ cnt += 1; } if(j > 0 && a[i][j - 1] == '#'){ dsu.merge(i, j, i, j - 1); } if(i > 0 && a[i - 1][j] == '#'){ dsu.merge(i, j, i - 1, j); } } } cout << 2_m .power(cnt) << "\n"; return 0; } /* */