結果
| 問題 |
No.2839 AND Constraint
|
| コンテスト | |
| ユーザー |
SnowBeenDiding
|
| 提出日時 | 2024-08-10 00:41:04 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 23 ms / 2,000 ms |
| コード長 | 5,842 bytes |
| コンパイル時間 | 5,446 ms |
| コンパイル使用メモリ | 319,716 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-08-10 00:41:11 |
| 合計ジャッジ時間 | 6,573 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 16 |
ソースコード
#include <atcoder/all>
#include <bits/stdc++.h>
#define rep(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++)
using namespace atcoder;
using namespace std;
typedef long long ll;
template <class T> struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res)
e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this)
e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
for (int i = 0; i < min(n, m); i++) {
(*this)[i] += g[i];
}
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
for (int i = 0; i < min(n, m); i++) {
(*this)[i] -= g[i];
}
return *this;
}
F &operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1)
d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2 * m));
F r(res);
f.resize(2 * m), internal::butterfly(f);
r.resize(2 * m), internal::butterfly(r);
for (int i = 0; i < 2 * m; i++) {
f[i] *= r[i];
}
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m), internal::butterfly(f);
for (int i = 0; i < 2 * m; i++) {
f[i] *= r[i];
}
internal::butterfly_inv(f);
T iz = T(2 * m).inv();
iz *= -iz;
for (int i = 0; i < m; i++) {
f[i] *= iz;
}
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
// fast: FMT-friendly modulus only
F &operator*=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
F &operator/=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}
// sparse
F &operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0)
g.erase(g.begin());
else
c = 0;
for (int i = n - 1; i >= 0; i--) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i)
break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F &operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
for (int i = 0; i < n; i++) {
for (auto &[j, b] : g) {
if (j > i)
break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1))
for (int i = n - d - 1; i >= 0; i--)
(*this)[i + d] += (*this)[i];
else if (c == T(-1))
for (int i = n - d - 1; i >= 0; i--)
(*this)[i + d] -= (*this)[i];
else
for (int i = n - d - 1; i >= 0; i--)
(*this)[i + d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1))
for (int i = 0; i < n - d; i++)
(*this)[i + d] -= (*this)[i];
else if (c == T(-1))
for (int i = 0; i < n - d; i++)
(*this)[i + d] += (*this)[i];
else
for (int i = 0; i < n - d; i++)
(*this)[i + d] -= (*this)[i] * c;
}
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this)
res += e * x, x *= a;
return res;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using mint = modint998244353;
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;
int main() {
int n, m;
cin >> n >> m;
vector<fps> dp(n + 1);
dp[0] = fps(m + 1);
dp[0][0] = 1;
fps x = {0, 1};
rep(i, 0, n) {
dp[i + 1] = dp[i];
dp[i + 1] += dp[i] * dp[i] * x;
}
cout << dp[n][m].val() << endl;
}
SnowBeenDiding