結果
| 問題 |
No.2829 GCD Divination
|
| コンテスト | |
| ユーザー |
detteiuu
|
| 提出日時 | 2024-08-10 02:51:45 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 191 ms / 2,000 ms |
| コード長 | 2,345 bytes |
| コンパイル時間 | 514 ms |
| コンパイル使用メモリ | 82,560 KB |
| 実行使用メモリ | 92,836 KB |
| 最終ジャッジ日時 | 2024-08-10 02:51:52 |
| 合計ジャッジ時間 | 6,595 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 35 |
ソースコード
import sys
sys.setrecursionlimit(10**6)
import pypyjit
pypyjit.set_param('max_unroll_recursion=-1')
class Eratosthenes:
def __init__(self, n):
self.isPrime = [True]*(n+1)
self.minfactor = [-1]*(n+1)
self.isPrime[0], self.isPrime[1] = False, False
self.minfactor[1] = 1
for i in range(2, n+1):
if self.isPrime[i]:
self.minfactor[i] = i
for j in range(i*2, n+1, i):
self.isPrime[j] = False
if self.minfactor[j] == -1:
self.minfactor[j] = i
def factorize(self, n):
factor = []
while n > 1:
p = self.minfactor[n]
cnt = 0
while self.minfactor[n] == p:
n //= p
cnt += 1
factor.append((p, cnt))
return factor
def divisor(self, n):
ans = [1]
pf = self.factorize(n)
for p, c in pf:
L = len(ans)
for i in range(L):
v = 1
for _ in range(c):
v *= p
ans.append(ans[i]*v)
return sorted(ans)
def factorization2(n):
arr = []
temp = n
for i in range(2, int(-(-n**0.5//1))+1):
if temp%i == 0:
cnt = 0
while temp%i == 0:
cnt += 1
temp //= i
arr.append([i, cnt])
if temp != 1:
arr.append([temp, 1])
if arr == []:
arr.append([n, 1])
return arr
def Euler(n):
if n > 10**6:
fact = factorization2(n)
else:
fact = E.factorize(n)
ans = n
for n, c in fact:
ans *= 1-(1/n)
return ans
def divisor2(n):
ans = []
for i in range(1, int(n**0.5)+1):
if n % i == 0:
ans.append(i)
if i*i != n:
ans.append(n//i)
return sorted(ans)
N = int(input())
def dfs(n):
if n in D:
return D[n]
if n > 10**6:
div = divisor2(n)
else:
div = E.divisor(n)
cnt = [0]*(len(div)-2)
for i in range(len(div)-2):
cnt[i] = Euler(n//div[i+1])
SUM = 0
for i in range(len(cnt)):
SUM += dfs(div[i+1])*(cnt[i]/(n-1))
D[n] = SUM+n/(n-1)
return D[n]
E = Eratosthenes(min(10**6, N))
D = dict()
print(dfs(N))
detteiuu