結果
問題 | No.2907 Business Revealing Dora Tiles |
ユーザー | 👑 Nachia |
提出日時 | 2024-08-11 17:09:49 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,794 bytes |
コンパイル時間 | 6,289 ms |
コンパイル使用メモリ | 82,008 KB |
実行使用メモリ | 81,468 KB |
最終ジャッジ日時 | 2024-09-23 12:53:36 |
合計ジャッジ時間 | 18,428 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
72,136 KB |
testcase_01 | AC | 48 ms
64,984 KB |
testcase_02 | AC | 48 ms
66,080 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | RE | - |
testcase_06 | WA | - |
testcase_07 | AC | 77 ms
64,748 KB |
testcase_08 | WA | - |
testcase_09 | RE | - |
testcase_10 | WA | - |
testcase_11 | RE | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | RE | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | RE | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | RE | - |
testcase_22 | WA | - |
testcase_23 | TLE | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
testcase_53 | -- | - |
testcase_54 | -- | - |
testcase_55 | -- | - |
testcase_56 | -- | - |
testcase_57 | -- | - |
testcase_58 | -- | - |
testcase_59 | -- | - |
ソースコード
''' translated https://yukicoder.me/submissions/998882 ''' nim_precalc1 = [] nim_inv_precalc1 = [] def nim_fill_precalc1() : global nim_precalc1 nim_precalc1 = [0] * (2 ** 16) nim_precalc1[(1 << 8) ^ 1] = 1 dd = 1 while dd < 8 : d = 1 << dd c = d >> 1 for a0 in range(d) : for a1 in range(d) : if (a0 | a1) != 0 : for b0 in range(d) : for b1 in range(d) : if (b0 | b1) != 0 : buf = 0 buf ^= nim_precalc1[(a1 << 8) ^ b1] buf ^= nim_precalc1[(a1 << 8) ^ b0] buf ^= nim_precalc1[(a0 << 8) ^ b1] buf <<= dd buf ^= nim_precalc1[(c << 8) ^ nim_precalc1[(a1 << 8) ^ b1]] buf ^= nim_precalc1[(a0 << 8) ^ b0] nim_precalc1[(((a1 << dd) ^ a0) << 8) ^ ((b1 << dd) ^ b0)] = buf dd *= 2 def nim_inv_precalc() : global nim_inv_precalc1 nim_inv_precalc1 = [0] * 256 for i in range(256) : for j in range(256) : if nim_precalc1[(i << 8) ^ j] == 1 : nim_inv_precalc1[i] = j break def nim_product_full(a, b, d = 6) : if a == 0 or b == 0 : return 0 if d == 3 : return nim_precalc1[(a << 8) ^ b] d -= 1 lm = (1 << (1 << d)) - 1 us = (1 << d) buf = 0 a1b1 = nim_product_full(a >> us, b >> us, d) a2b2 = nim_product_full(a & lm, b & lm, d) aabb = nim_product_full((a & lm) ^ (a >> us), (b & lm) ^ (b >> us), d) buf ^= (aabb ^ a2b2) buf <<= us buf ^= a2b2 buf ^= nim_product_full(1 << (us - 1), a1b1, d) return buf def nim_inv_full(a, d = 6) : if a < 256 : return nim_inv_precalc1[a] p = 1 << (d - 1) a_h = a >> p a_l = a - (a_h << p) half_inv = nim_inv_full(nim_product_full(a_h ^ a_l, a_l, d) ^ nim_product_full(nim_product_full(a_h, a_h, d - 1), 1 << (p - 1)), d - 1) return (nim_product_full(half_inv, a_h, d) << p) ^ nim_product_full(half_inv, a_h ^ a_l, d) def nim_product(a, b) : return nim_product_full(a, b) def nim_inv(a) : return nim_inv_full(a) nim_fill_precalc1() nim_inv_precalc() def popcount(a) : ans = 0 for i in range(64) : ans += (a >> i) & 1 return ans def testcase() : n, t = map(int,input().split()) a = [list(map(int,input().split())) for _ in range(t)] for i in range(t) : for j in range(n) : a[i][j] -= 1 y = 0 for x in reversed(range(0, n)) : if y < t : for tt in range(y, t) : if a[tt][x] != 0 : a[y], a[tt] = a[tt], a[y] break if a[y][x] == 0 : continue inv_b = nim_inv(a[y][x]) for t in range(n) : a[y][t] = nim_product(a[y][t], inv_b) for yy in range(t) : if y != yy : times = a[yy][x] for j in range(n) : a[yy][j] ^= nim_product(a[y][j], times) y += 1 ranks = [0] * (1 << n) def most_significant(x) : f = len(x) - 1 while f >= 0 and x[f] == 0 : f -= 1 return f def dfs(q, offseti, offsetd, z) : if z == 1 : ranks[offseti] = offsetd if q[0][0] : offsetd += 64 ranks[offseti + 1] = offsetd return q1 = [[i for i in j] for j in q] # deep copy d1 = offsetd if q1[-1][-1] != 0 : d1 += 64 q1.pop() for qq in q1 : qq.pop() dfs(q1, offseti + (1 << (z-1)), d1, z-1) q1 = q for qq in q1 : qq.pop() q1x = q1[-1] q1.pop() b = most_significant(q1x) if b >= 0 : inv_b = nim_inv(q1x[b]) for t in range(b) : q1x[t] = nim_product(q1x[t], inv_b) for t in range(b+1, len(q1)) : times = q1[t][b] for i in range(len(q1x)) : q1[t][i] ^= nim_product(q1x[i], times) q1[b], q1x = q1x, q1[b] dfs(q1, offseti, offsetd, z-1) qinit = [[0] * n for _ in range(n)] for i in range(y) : qinit[most_significant(a[i])] = a[i] dfs(qinit, 0, 0, n) w = [0] * (1 << n) for i in range(1 << n) : w[i] = pow(2, 64 * popcount(i) - ranks[i], 998244353) ans = 0 for i in range(1 << n) : ans += w[i] * (-1 if (n - popcount(i)) % 2 == 1 else 1) print(ans % 998244353) testcase()