結果
問題 | No.2364 Knapsack Problem |
ユーザー | vwxyz |
提出日時 | 2024-08-15 11:34:18 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 184 ms / 3,000 ms |
コード長 | 6,753 bytes |
コンパイル時間 | 327 ms |
コンパイル使用メモリ | 13,312 KB |
実行使用メモリ | 16,384 KB |
最終ジャッジ日時 | 2024-08-15 11:34:22 |
合計ジャッジ時間 | 3,741 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 30 ms
11,392 KB |
testcase_01 | AC | 30 ms
11,392 KB |
testcase_02 | AC | 32 ms
11,520 KB |
testcase_03 | AC | 31 ms
11,392 KB |
testcase_04 | AC | 31 ms
11,264 KB |
testcase_05 | AC | 32 ms
11,392 KB |
testcase_06 | AC | 31 ms
11,392 KB |
testcase_07 | AC | 93 ms
13,312 KB |
testcase_08 | AC | 32 ms
11,392 KB |
testcase_09 | AC | 45 ms
11,648 KB |
testcase_10 | AC | 64 ms
12,416 KB |
testcase_11 | AC | 34 ms
11,392 KB |
testcase_12 | AC | 184 ms
14,848 KB |
testcase_13 | AC | 170 ms
14,976 KB |
testcase_14 | AC | 165 ms
14,720 KB |
testcase_15 | AC | 167 ms
15,872 KB |
testcase_16 | AC | 161 ms
14,720 KB |
testcase_17 | AC | 160 ms
14,464 KB |
testcase_18 | AC | 175 ms
14,848 KB |
testcase_19 | AC | 172 ms
16,384 KB |
testcase_20 | AC | 166 ms
15,872 KB |
testcase_21 | AC | 160 ms
14,464 KB |
ソースコード
class Graph: def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph!=None: self.graph=graph """ self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) """ else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V finished=[False]*self.V if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc.append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if (directed_acyclic or cycle_detection or topological_sort) and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg=[[],[]] for tpl in self.edges: x,y=tpl[:2] if self.weighted else tpl if uwd[x]==self.inf or uwd[y]==self.inf: continue if not uwd[x]%2^uwd[y]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu N,M,W=map(int,input().split()) A=list(map(int,input().split())) B=list(map(int,input().split())) C=list(map(int,input().split())) D=list(map(int,input().split())) A+=[-c for c in C] B+=[-d for d in D] ok=[False]*(1<<N+M) V=[] for bit in range(1<<N+M): w,v=0,0 for i in range(N+M): if bit&1<<i: w+=A[i] v+=B[i] if 0<=w<=W: ok[bit]=True V.append(v) edges=[] for bit in range(1<<N+M): for i in range(N+M): if bit&1<<i: if ok[bit^1<<i] and ok[bit]: edges.append((bit^1<<i,bit)) G=Graph(1<<N+M,edges=edges,directed=True) lc=G.SIV_DFS(0,linked_components=True) ans=max(V[bit] for bit in lc) print(ans)