結果
問題 | No.2650 [Cherry 6th Tune *] セイジャク |
ユーザー | detteiuu |
提出日時 | 2024-08-17 14:34:41 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,365 bytes |
コンパイル時間 | 388 ms |
コンパイル使用メモリ | 82,852 KB |
実行使用メモリ | 108,040 KB |
最終ジャッジ日時 | 2024-08-17 14:35:07 |
合計ジャッジ時間 | 22,527 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 60 ms
68,356 KB |
testcase_01 | AC | 59 ms
68,712 KB |
testcase_02 | AC | 406 ms
90,324 KB |
testcase_03 | AC | 186 ms
82,592 KB |
testcase_04 | WA | - |
testcase_05 | AC | 350 ms
90,880 KB |
testcase_06 | AC | 286 ms
84,816 KB |
testcase_07 | AC | 316 ms
90,624 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 665 ms
107,744 KB |
testcase_11 | WA | - |
testcase_12 | AC | 695 ms
107,648 KB |
testcase_13 | AC | 656 ms
106,328 KB |
testcase_14 | AC | 701 ms
107,212 KB |
testcase_15 | WA | - |
testcase_16 | AC | 740 ms
107,064 KB |
testcase_17 | AC | 836 ms
106,808 KB |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 776 ms
107,368 KB |
testcase_22 | AC | 774 ms
107,104 KB |
testcase_23 | WA | - |
testcase_24 | AC | 695 ms
107,596 KB |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 713 ms
108,040 KB |
testcase_29 | WA | - |
testcase_30 | AC | 593 ms
106,336 KB |
testcase_31 | AC | 710 ms
107,592 KB |
testcase_32 | AC | 612 ms
98,628 KB |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) n = self.size = len(a) num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] return True def _pop(self, a: List[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans N, A = map(int, input().split()) X = list(map(int, input().split())) T = int(input()) LR = [list(map(int, input().split())) for _ in range(T)] S = SortedSet([(X[i], i) for i in range(N)]) ans = [-1]*N for i in reversed(range(T)): L, R = LR[i] idx = S.index((L, -1)) if idx == len(S): break while idx < len(S) and S[idx][0] <= R: j = S[idx][1] S.discard(S[idx]) ans[j] = i+1 print(*ans, sep="\n")