結果
| 問題 |
No.1678 Coin Trade (Multiple)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-08-19 14:32:10 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 262 ms / 5,000 ms |
| コード長 | 23,564 bytes |
| コンパイル時間 | 9,605 ms |
| コンパイル使用メモリ | 233,508 KB |
| 実行使用メモリ | 24,584 KB |
| 最終ジャッジ日時 | 2024-08-19 14:32:28 |
| 合計ジャッジ時間 | 16,615 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 56 |
ソースコード
// 最小费用流/最小费用最大流
// "边权要求非负",或者"给出的图为dag且顶点编号为拓扑序".
// https://kopricky.github.io/code/NetworkFlow/min_cost_flow_DAG.html
// https://atcoder.jp/contests/tdpc/tasks/tdpc_graph
// 时间复杂度O(|f|mlogn), |f|为流量
//
// api:
// NewMinCostFlow(n, source, sink int32) *MinCostFlow
// NewMinCostFlowFromDag(n, source, sink int32) *MinCostFlow
// AddEdge(from, to int32, cap, cost int) int32
// Flow() (flow, cost int)
// FlowWithLimit(limit int) (flow, cost int)
// Slope() [][2]int
// SlopeWithLimit(limit int) [][2]int
// PathDecomposition() [][]int32
// GetEdge(i int32) edge
// Edges() []edge
// Debug()
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
// assignment()
// judge()
// abc214h()
// abcGraph()
// abcMinCostFlow()
// yuki1288()
// yuki1301()
// yuki1324()
yuki1678()
// yuki2604()
}
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_6_B
func judge() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int32
var f int
fmt.Fscan(in, &n, &m, &f)
pd := NewMinCostFlow(n, 0, n-1)
for i := int32(0); i < m; i++ {
var from, to int32
var cap, cost int
fmt.Fscan(in, &from, &to, &cap, &cost)
pd.AddEdge(from, to, cap, cost)
}
flow, cost := pd.FlowWithLimit(f)
if flow < f {
fmt.Fprintln(out, -1)
} else {
fmt.Fprintln(out, cost)
}
}
// https://judge.yosupo.jp/problem/assignment
// 给定一个n*n的矩阵,每个元素表示从i到j的费用.
// 选择n个元素,使得每行每列只有一个元素,求最小费用.
// 输出每行选择的列.
func assignment() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
fmt.Fscan(in, &n)
grid := make([][]int, n)
for i := int32(0); i < n; i++ {
grid[i] = make([]int, n)
for j := int32(0); j < n; j++ {
fmt.Fscan(in, &grid[i][j])
}
}
source := int32(0)
left := func(i int32) int32 { return 1 + i }
right := func(i int32) int32 { return 1 + n + i }
sink := right(n)
M := NewMinCostFlowFromDag(n+n+2, source, sink)
for i := int32(0); i < n; i++ {
for j := int32(0); j < n; j++ {
M.AddEdge(left(i), right(j), 1, grid[i][j])
}
}
for i := int32(0); i < n; i++ {
M.AddEdge(source, left(i), 1, 0)
M.AddEdge(right(i), sink, 1, 0)
}
_, minCost := M.Flow()
edges := M.Edges()
res := make([]int32, n)
for _, e := range edges {
if e.flow > 0 && 1 <= e.from && e.from <= n {
res[e.from-1] = e.to - right(0)
}
}
fmt.Fprintln(out, minCost)
for i := int32(0); i < n; i++ {
fmt.Fprint(out, res[i], " ")
}
}
// H - Collecting
// https://atcoder.jp/contests/abc214h/tasks/abc214_h
// !有一张N个点M条边的有向图,每个点有一个点权ai.
// !现在要找出k条经过点0的路径,使得这些路径的并集的点权和尽量大。
// dag路径覆盖最大点权和
// n,m<=2e5,k<=10.
func abc214h() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int32
var k int
fmt.Fscan(in, &n, &m, &k)
graph := make([][]int32, n)
for i := int32(0); i < m; i++ {
var u, v int32
fmt.Fscan(in, &u, &v)
u, v = u-1, v-1
graph[u] = append(graph[u], v)
}
weights := make([]int, n)
for i := int32(0); i < n; i++ {
fmt.Fscan(in, &weights[i])
}
count, belong := StronglyConnectedComponent(graph)
dag := SccDag(graph, count, belong)
groupSum := make([]int, count)
for i := int32(0); i < n; i++ {
groupSum[belong[i]] += weights[i]
}
source := int32(0)
left := func(i int32) int32 { return 1 + 2*i + 0 }
right := func(i int32) int32 { return 1 + 2*i + 1 }
sink := 1 + count + count
M := NewMinCostFlowFromDag(count+count+2, source, sink)
M.AddEdge(source, left(belong[0]), k, 0) // 经过0
for i := int32(0); i < count; i++ {
M.AddEdge(left(i), right(i), 1, -groupSum[i])
M.AddEdge(left(i), right(i), k, 0)
}
for i := int32(0); i < count; i++ {
M.AddEdge(right(i), sink, k, 0)
}
for from := int32(0); from < int32(len(dag)); from++ {
nexts := dag[from]
for _, to := range nexts {
M.AddEdge(right(from), left(to), k, 0)
}
}
_, minCost := M.Flow()
fmt.Fprintln(out, -minCost)
}
// https://atcoder.jp/contests/tdpc/tasks/tdpc_graph
// !有一张N个点M条边的有向图.
// !现在要找出两条路径,使得这两条路径的并集的点的个数最多.
// n<=300.
func abcGraph() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
fmt.Fscan(in, &n)
adjMatrix := make([][]bool, n)
for i := int32(0); i < n; i++ {
adjMatrix[i] = make([]bool, n)
}
for i := int32(0); i < n; i++ {
for j := int32(0); j < n; j++ {
var v int8
fmt.Fscan(in, &v)
adjMatrix[i][j] = v == 1
}
}
k := 2
graph := make([][]int32, n)
for i := int32(0); i < n; i++ {
for j := int32(0); j < n; j++ {
if adjMatrix[i][j] {
graph[i] = append(graph[i], j)
}
}
}
weights := make([]int, n)
for i := int32(0); i < n; i++ {
weights[i] = 1
}
count, belong := StronglyConnectedComponent(graph)
dag := SccDag(graph, count, belong)
groupSum := make([]int, count)
for i := int32(0); i < n; i++ {
groupSum[belong[i]] += weights[i]
}
source := int32(0)
source2 := int32(1)
left := func(i int32) int32 { return 2 + 2*i + 0 }
right := func(i int32) int32 { return 2 + 2*i + 1 }
sink := 2 + count + count
M := NewMinCostFlowFromDag(count+count+3, source, sink)
M.AddEdge(source, source2, k, 0)
for i := int32(0); i < count; i++ {
M.AddEdge(source2, left(i), k, 0)
}
for i := int32(0); i < count; i++ {
M.AddEdge(left(i), right(i), 1, -groupSum[i])
M.AddEdge(left(i), right(i), k, 0)
}
for i := int32(0); i < count; i++ {
M.AddEdge(right(i), sink, k, 0)
}
for from := int32(0); from < int32(len(dag)); from++ {
nexts := dag[from]
for _, to := range nexts {
M.AddEdge(right(from), left(to), k, 0)
}
}
_, minCost := M.Flow()
fmt.Fprintln(out, -minCost)
}
// https://atcoder.jp/contests/practice2/tasks/practice2_e
// 给定一个n*n的矩阵,选择若干个单元格使得和最大.
// 但是不能同一行或者同一列选择个数不能超过k.
// 输出方案.
func abcMinCostFlow() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
var k int
fmt.Fscan(in, &n, &k)
grid := make([][]int, n)
for i := int32(0); i < n; i++ {
grid[i] = make([]int, n)
for j := int32(0); j < n; j++ {
fmt.Fscan(in, &grid[i][j])
}
}
ROW, COL := n, n
S, T := ROW+COL, ROW+COL+1
BIG := int(1e9 + 10)
/**
* generate (s -> row -> column -> t) graph
* i-th row correspond to vertex i
* i-th col correspond to vertex n + i
**/
M := NewMinCostFlow(ROW+COL+2, S, T)
// we can "waste" the flow
M.AddEdge(S, T, int(n)*k, BIG)
for i := int32(0); i < n; i++ {
M.AddEdge(S, i, k, 0)
M.AddEdge(ROW+i, T, k, 0)
}
for i := int32(0); i < ROW; i++ {
for j := int32(0); j < COL; j++ {
M.AddEdge(i, ROW+j, 1, BIG-grid[i][j])
}
}
_, cost := M.FlowWithLimit(int(n) * k)
fmt.Fprintln(out, -cost+BIG*int(n)*k)
visited := make([][]bool, ROW)
for i := int32(0); i < ROW; i++ {
visited[i] = make([]bool, COL)
}
path := M.PathDecomposition()
for _, p := range path {
if len(p) == 4 {
x, y := p[1], p[2]-ROW
visited[x][y] = true
}
}
for i := int32(0); i < ROW; i++ {
for j := int32(0); j < COL; j++ {
if visited[i][j] {
fmt.Fprint(out, "X")
} else {
fmt.Fprint(out, ".")
}
}
fmt.Fprintln(out)
}
}
// yukiCollection
// https://yukicoder.me/problems/no/1288
// 给定yuki组成的一个字符,每个字符有一个权值.
// 不断删除子序列yuki,求获得的最大权值.
// n<=2000.
func yuki1288() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
fmt.Fscan(in, &n)
var s string
fmt.Fscan(in, &s)
scores := make([]int, n)
for i := int32(0); i < n; i++ {
fmt.Fscan(in, &scores[i])
}
fa := func(i int32) int32 { return i }
fb := func(i int32) int32 { return n + 1 + i }
fc := func(i int32) int32 { return 2*(n+1) + i }
fd := func(i int32) int32 { return 3*(n+1) + i }
fe := func(i int32) int32 { return 4*(n+1) + i }
M := NewMinCostFlowFromDag(5*n+5, fa(0), fe(n))
for i := int32(0); i < n; i++ {
M.AddEdge(fa(i), fa(i+1), int(n), 0)
M.AddEdge(fb(i), fb(i+1), int(n), 0)
M.AddEdge(fc(i), fc(i+1), int(n), 0)
M.AddEdge(fd(i), fd(i+1), int(n), 0)
M.AddEdge(fe(i), fe(i+1), int(n), 0)
}
for i := int32(0); i < n; i++ {
switch s[i] {
case 'y':
M.AddEdge(fa(i), fb(i+1), 1, -scores[i])
case 'u':
M.AddEdge(fb(i), fc(i+1), 1, -scores[i])
case 'k':
M.AddEdge(fc(i), fd(i+1), 1, -scores[i])
case 'i':
M.AddEdge(fd(i), fe(i+1), 1, -scores[i])
}
}
res := -INF
slope := M.Slope()
for _, p := range slope {
res = max(res, -p[1])
}
fmt.Fprintln(out, res)
}
// StrangeGraphShortestPath
// https://yukicoder.me/problems/no/1301
// No.1301-奇怪图的最短路-拆点
// 每条无向边有一个边权
// 第一次经过这条边的时候,边权为w1
// 第二次经过这条边的时候,边权为w2 (w1<=w2)
// 每条边最多经过两次
// !求1到n再回到1的最短路(折返)
// O(f*ElogV)
// !只能走两次:流量限定为2
// 去的时候: a->ein->eout->b
// 回来的时候: b->ein->eout->a
// 注意ein->eout有两条边,一条边的边权为w1,一条边的边权为w2,容量都为1
func yuki1301() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int32
fmt.Fscan(in, &n, &m)
M := NewMinCostFlow(n+m+m, 0, n-1)
for i := int32(0); i < m; i++ {
var a, b int32
var w1, w2 int
fmt.Fscan(in, &a, &b, &w1, &w2)
a, b = a-1, b-1
ein, eout := n+2*i, n+2*i+1
M.AddEdge(a, ein, 2, 0)
M.AddEdge(eout, a, 2, 0)
M.AddEdge(b, ein, 2, 0)
M.AddEdge(eout,
b, 2, 0)
M.AddEdge(ein, eout, 1, w1)
M.AddEdge(ein, eout, 1, w2)
}
_, minCost := M.FlowWithLimit(2)
fmt.Fprintln(out, minCost)
}
// No.1324 Approximate the Matrix (凸函数,增量)
// https://yukicoder.me/problems/no/1324
// 构造一个n*n的矩阵,每个元素是一个非负整数.
// 矩阵第i行的和是A[i],第j列的和是B[j].
// 再给定一个目标矩阵P,求一个矩阵Q,使得Q和P的距离之和最小.
// 这里的距离是每个元素的平方差之和.
func yuki1324() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, k int32
fmt.Fscan(in, &n, &k)
A, B := make([]int, n), make([]int, n)
for i := int32(0); i < n; i++ {
fmt.Fscan(in, &A[i])
}
for i := int32(0); i < n; i++ {
fmt.Fscan(in, &B[i])
}
P := make([][]int, n)
for i := int32(0); i < n; i++ {
P[i] = make([]int, n)
for j := int32(0); j < n; j++ {
fmt.Fscan(in, &P[i][j])
}
}
source := int32(0)
left := func(i int32) int32 { return 1 + i }
right := func(i int32) int32 { return 1 + n + i }
sink := 1 + n + n
M := NewMinCostFlowFromDag(n+n+2, source, sink)
for i := int32(0); i < n; i++ {
M.AddEdge(source, left(i), A[i], 0)
M.AddEdge(right(i), sink, B[i], 0)
}
base := 0
for i := int32(0); i < n; i++ {
for j := int32(0); j < n; j++ {
v := P[i][j]
base += v * v
for k := 0; k <= min(A[i], B[j]); k++ {
a := (v - k) * (v - k)
b := (v - k - 1) * (v - k - 1)
M.AddEdge(left(i), right(j), 1, b-a) // !每一条流的增量
}
}
}
_, cost := M.Flow()
fmt.Fprintln(out, base+cost)
}
// No.1678 CoinTrade (Multiple)
// https://yukicoder.me/problems/no/1678
// https://yukicoder.me/problems/no/1678/editorial
// 从国家0开始,有n个国家,每个国家有一个货币.
// !A[i]表示国家i的货币单价.
// !B[i]表示在国家i,可以用哪些国家的货币兑换国家i得货币(注意,最多兑换一枚).
// 由于钱包的容量有限,货币个数不能超过k个.
// 如果您采取最佳行动,您的日元在旅行开始前和旅行结束后会上涨多少? 求出其最大值。
// n<=5e4,k<=50.
func yuki1678() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int32
var k int
fmt.Fscan(in, &n, &k)
A, B := make([]int, n), make([][]int32, n)
for i := int32(0); i < n; i++ {
var a, m int
fmt.Fscan(in, &a, &m)
A[i] = a
B[i] = make([]int32, m)
for j := 0; j < m; j++ {
fmt.Fscan(in, &B[i][j])
B[i][j]--
}
}
source := int32(0)
idx := func(v int32) int32 { return 1 + v }
sink := n + 1
M := NewMinCostFlowFromDag(n+2, source, sink)
for i := int32(0); i < n+1; i++ {
M.AddEdge(i, i+1, k, 0)
}
for to := int32(0); to < n; to++ {
for _, from := range B[to] {
cost := A[to] - A[from]
M.AddEdge(idx(from), idx(to), 1, -cost)
}
}
_, cost := M.Flow()
fmt.Fprintln(out, -cost)
}
// No.2604 Initial Motion
// https://yukicoder.me/problems/no/2604
func yuki2604() {}
// 100401. 放三个车的价值之和最大 II
// https://leetcode.cn/problems/maximum-value-sum-by-placing-three-rooks-ii/
func maximumValueSum(board [][]int) int64 {
ROW, COL := int32(len(board)), int32(len(board[0]))
S, T := ROW+COL, ROW+COL+1
BIG := int(1e9 + 10)
M := NewMinCostFlow(ROW+COL+2, S, T)
for r := int32(0); r < ROW; r++ {
M.AddEdge(S, r, 1, 0)
}
for r := int32(0); r < ROW; r++ {
for c := int32(0); c < COL; c++ {
M.AddEdge(r, ROW+c, 1, BIG-board[r][c]) // 求最大值,取负数
}
}
for c := int32(0); c < COL; c++ {
M.AddEdge(ROW+c, T, 1, 0)
}
_, cost := M.FlowWithLimit(3) // !放三个车,流量为3
return int64(-cost + 3*BIG)
}
const INF int = 1e18
type MinCostFlow struct {
dag bool
n, source, sink int32
edges []edge
}
type edge struct {
from, to int32
cap, flow int
cost int
}
type _edge struct {
to, rev int32
cap, cost int
}
func NewMinCostFlow(n, source, sink int32) *MinCostFlow {
checkArguments(n, source, sink)
return &MinCostFlow{n: n, source: source, sink: sink}
}
func NewMinCostFlowFromDag(n, source, sink int32) *MinCostFlow {
checkArguments(n, source, sink)
return &MinCostFlow{dag: true, n: n, source: source, sink: sink}
}
func (mcf *MinCostFlow) AddEdge(from, to int32, cap, cost int) int32 {
if from < 0 || from >= mcf.n {
panic("from out of range")
}
if to < 0 || to >= mcf.n {
panic("to out of range")
}
if cap < 0 {
panic("cap is negative")
}
if !mcf.dag && cost < 0 {
panic("cost is negative in non-dag")
}
if mcf.dag && from >= to {
panic("from >= to in dag")
}
m := int32(len(mcf.edges))
mcf.edges = append(mcf.edges, edge{from: from, to: to, cap: cap, cost: cost})
return m
}
func (mcf *MinCostFlow) Flow() (flow, cost int) {
return mcf.FlowWithLimit(INF)
}
func (mcf *MinCostFlow) FlowWithLimit(limit int) (flow, cost int) {
res := mcf.SlopeWithLimit(limit)
return res[len(res)-1][0], res[len(res)-1][1]
}
func (mcf *MinCostFlow) Slope() [][2]int { return mcf.SlopeWithLimit(INF) }
func (mcf *MinCostFlow) SlopeWithLimit(limit int) [][2]int {
m := int32(len(mcf.edges))
edgeIndex := make([]int32, m)
g := func() *csr {
degree, redgeIndex := make([]int32, mcf.n), make([]int32, m)
elist := make([]elistPair, 0, 2*m)
for i := int32(0); i < m; i++ {
e := mcf.edges[i]
edgeIndex[i] = degree[e.from]
degree[e.from]++
redgeIndex[i] = degree[e.to]
degree[e.to]++
elist = append(elist, elistPair{first: e.from, second: _edge{to: e.to, rev: -1, cap: e.cap - e.flow, cost: e.cost}})
elist = append(elist, elistPair{first: e.to, second: _edge{to: e.from, rev: -1, cap: e.flow, cost: -e.cost}})
}
csr := newCsr(mcf.n, elist)
for i := int32(0); i < m; i++ {
e := mcf.edges[i]
edgeIndex[i] += csr.start[e.from]
redgeIndex[i] += csr.start[e.to]
csr.elist[edgeIndex[i]].rev = redgeIndex[i]
csr.elist[redgeIndex[i]].rev = edgeIndex[i]
}
return csr
}()
res := mcf._slope(g, limit)
for i := int32(0); i < m; i++ {
e := g.elist[edgeIndex[i]]
mcf.edges[i].flow = mcf.edges[i].cap - e.cap
}
return res
}
// 路径还原, O(f*(n+m)).
func (mcf *MinCostFlow) PathDecomposition() [][]int32 {
to := make([][]int32, mcf.n)
for _, e := range mcf.edges {
for i := 0; i < e.flow; i++ {
to[e.from] = append(to[e.from], e.to)
}
}
var res [][]int32
visited := make([]bool, mcf.n)
for len(to[mcf.source]) > 0 {
path := []int32{mcf.source}
visited[mcf.source] = true
for path[len(path)-1] != mcf.sink {
last := &to[path[len(path)-1]]
tmp := (*last)[len(*last)-1]
*last = (*last)[:len(*last)-1]
for visited[tmp] {
visited[path[len(path)-1]] = false
path = path[:len(path)-1]
}
path = append(path, tmp)
visited[tmp] = true
}
for _, v := range path {
visited[v] = false
}
res = append(res, path)
}
return res
}
func (mcf *MinCostFlow) _slope(g *csr, flowLimit int) [][2]int {
if mcf.dag {
if mcf.source != 0 || mcf.sink != mcf.n-1 {
panic("source and sink must be 0 and n-1 in dag")
}
}
dualDist := make([][2]int, mcf.n)
prevE := make([]int32, mcf.n)
visited := make([]bool, mcf.n)
queMin := make([]int32, 0)
pq := make([]pqPair, 0)
pqLess := func(i, j int32) bool { return pq[i].key < pq[j].key }
dualRef := func() bool {
for i := int32(0); i < mcf.n; i++ {
dualDist[i][1] = INF
}
for i := int32(0); i < mcf.n; i++ {
visited[i] = false
}
queMin = queMin[:0]
pq = pq[:0]
heapR := int32(0)
dualDist[mcf.source][1] = 0
queMin = append(queMin, mcf.source)
for len(queMin) > 0 || len(pq) > 0 {
var v int32
if len(queMin) > 0 {
v = queMin[len(queMin)-1]
queMin = queMin[:len(queMin)-1]
} else {
for heapR < int32(len(pq)) {
heapR++
heapUp(pq, heapR-1, pqLess)
}
v = pq[0].to
pq[0], pq[heapR-1] = pq[heapR-1], pq[0]
heapDown(pq, 0, heapR-1, pqLess)
pq = pq[:len(pq)-1]
heapR--
}
if visited[v] {
continue
}
visited[v] = true
if v == mcf.sink {
break
}
dualV, distV := dualDist[v][0], dualDist[v][1]
for i := g.start[v]; i < g.start[v+1]; i++ {
e := &g.elist[i]
if e.cap == 0 {
continue
}
cost := e.cost - dualDist[e.to][0] + dualV
if dualDist[e.to][1] > distV+cost {
distTo := distV + cost
dualDist[e.to][1] = distTo
prevE[e.to] = e.rev
if distTo == distV {
queMin = append(queMin, e.to)
} else {
pq = append(pq, pqPair{to: e.to, key: distTo})
}
}
}
}
if !visited[mcf.sink] {
return false
}
for i := int32(0); i < mcf.n; i++ {
if !visited[i] {
continue
}
dualDist[i][0] -= dualDist[mcf.sink][1] - dualDist[i][1]
}
return true
}
dualRefDag := func() bool {
for i := int32(0); i < mcf.n; i++ {
dualDist[i][1] = INF
}
dualDist[mcf.source][1] = 0
for i := int32(0); i < mcf.n; i++ {
visited[i] = false
}
visited[mcf.source] = true
for v := int32(0); v < mcf.n; v++ {
if !visited[v] {
continue
}
dualV, distV := dualDist[v][0], dualDist[v][1]
for i := g.start[v]; i < g.start[v+1]; i++ {
e := &g.elist[i]
if e.cap == 0 {
continue
}
cost := e.cost - dualDist[e.to][0] + dualV
if dualDist[e.to][1] > distV+cost {
visited[e.to] = true
distTo := distV + cost
dualDist[e.to][1] = distTo
prevE[e.to] = e.rev
}
}
}
if !visited[mcf.sink] {
return false
}
for i := int32(0); i < mcf.n; i++ {
if !visited[i] {
continue
}
dualDist[i][0] -= dualDist[mcf.sink][1] - dualDist[i][1]
}
return true
}
flow, cost := 0, 0
prevCostPerFlow := -1
res := [][2]int{{0, 0}}
for flow < flowLimit {
if mcf.dag && flow == 0 {
if !dualRefDag() {
break
}
} else {
if !dualRef() {
break
}
}
c := flowLimit - flow
for v := mcf.sink; v != mcf.source; v = g.elist[prevE[v]].to {
c = min(c, g.elist[g.elist[prevE[v]].rev].cap)
}
for v := mcf.sink; v != mcf.source; v = g.elist[prevE[v]].to {
e := &g.elist[prevE[v]]
e.cap += c
g.elist[e.rev].cap -= c
}
d := -dualDist[mcf.source][0]
flow += c
cost += c * d
if prevCostPerFlow == d {
res = res[:len(res)-1]
}
res = append(res, [2]int{flow, cost})
prevCostPerFlow = d
}
return res
}
func (mcf *MinCostFlow) GetEdge(i int32) edge {
return mcf.edges[i]
}
func (mcf *MinCostFlow) Edges() []edge {
return mcf.edges
}
func (mcf *MinCostFlow) Debug() {
fmt.Println("flow graph")
fmt.Println("from, to, cap, cost")
for _, e := range mcf.edges {
fmt.Println(e.from, e.to, e.cap, e.cost)
}
}
func checkArguments(n int32, source int32, sink int32) {
if source < 0 || source >= n {
panic("source out of range")
}
if sink < 0 || sink >= n {
panic("sink out of range")
}
if source == sink {
panic("source equals to sink")
}
}
type elistPair struct {
first int32
second _edge
}
type csr struct {
start []int32
elist []_edge
}
func newCsr(n int32, edges []elistPair) *csr {
start := make([]int32, n+1)
elist := make([]_edge, len(edges))
for i := int32(0); i < int32(len(edges)); i++ {
start[edges[i].first+1]++
}
for i := int32(1); i <= n; i++ {
start[i] += start[i-1]
}
counter := append(start[:0:0], start...)
for _, e := range edges {
elist[counter[e.first]] = e.second
counter[e.first]++
}
return &csr{start: start, elist: elist}
}
// heapUtils
type pqPair = struct {
to int32
key int
}
func heapUp(data []pqPair, i0 int32, less func(a, b int32) bool) {
for {
i := (i0 - 1) / 2
if i == i0 || !less(i0, i) {
break
}
data[i], data[i0] = data[i0], data[i]
i0 = i
}
}
func heapDown(data []pqPair, i0, n int32, less func(a, b int32) bool) {
i := i0
for {
j1 := (i << 1) | 1
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
break
}
j := j1 // left child
if j2 := j1 + 1; j2 < n && less(j2, j1) {
j = j2 // = 2*i + 2 // right child
}
if !less(j, i) {
break
}
data[i], data[j] = data[j], data[i]
i = j
}
}
// 有向图强连通分量分解.
func StronglyConnectedComponent(graph [][]int32) (count int32, belong []int32) {
n := int32(len(graph))
belong = make([]int32, n)
low := make([]int32, n)
order := make([]int32, n)
for i := range order {
order[i] = -1
}
now := int32(0)
path := []int32{}
var dfs func(int32)
dfs = func(v int32) {
low[v] = now
order[v] = now
now++
path = append(path, v)
for _, to := range graph[v] {
if order[to] == -1 {
dfs(to)
low[v] = min32(low[v], low[to])
} else {
low[v] = min32(low[v], order[to])
}
}
if low[v] == order[v] {
for {
u := path[len(path)-1]
path = path[:len(path)-1]
order[u] = n
belong[u] = count
if u == v {
break
}
}
count++
}
}
for i := int32(0); i < n; i++ {
if order[i] == -1 {
dfs(i)
}
}
for i := int32(0); i < n; i++ {
belong[i] = count - 1 - belong[i]
}
return
}
// 有向图的强连通分量缩点.
func SccDag(graph [][]int32, count int32, belong []int32) (dag [][]int32) {
dag = make([][]int32, count)
adjSet := make([]map[int32]struct{}, count)
for i := int32(0); i < count; i++ {
adjSet[i] = make(map[int32]struct{})
}
for cur, nexts := range graph {
for _, next := range nexts {
if bid1, bid2 := belong[cur], belong[next]; bid1 != bid2 {
adjSet[bid1][bid2] = struct{}{}
}
}
}
for i := int32(0); i < count; i++ {
for next := range adjSet[i] {
dag[i] = append(dag[i], next)
}
}
return
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min32(a, b int32) int32 {
if a < b {
return a
}
return b
}
func max32(a, b int32) int32 {
if a > b {
return a
}
return b
}