結果
問題 | No.1641 Tree Xor Query |
ユーザー |
|
提出日時 | 2024-08-20 14:02:11 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 317 ms / 5,000 ms |
コード長 | 15,217 bytes |
コンパイル時間 | 14,684 ms |
コンパイル使用メモリ | 224,088 KB |
実行使用メモリ | 47,164 KB |
最終ジャッジ日時 | 2024-08-20 14:02:28 |
合計ジャッジ時間 | 14,580 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
// 单点修改,路径查询,子树查询package mainimport ("bufio""fmt""os")func main() {// yosupoVertexAddPathSum()yuki1641()}func demo() {{// 0// / \// 1 2// / \// 3 4tree := NewTree32(5)tree.AddEdge(0, 1, 0)tree.AddEdge(0, 2, 0)tree.AddEdge(2, 3, 0)tree.AddEdge(2, 4, 0)tree.Build(0)S := NewTreeAbleGroup(tree, false, true, true)S.Build(func(vidOrEid int32) E { return int(vidOrEid) })fmt.Println(S.QuerySubtree(0)) // 7fmt.Println(S.QuerySubtree(1)) // 1fmt.Println(S.QuerySubtree(2)) // 9fmt.Println(S.QuerySubtree(3)) // 3fmt.Println(S.QuerySubtree(4)) // 4fmt.Println(S.QueryPath(1, 3)) // 4fmt.Println(S.QuerySubtreeRooted(0, 3)) // 4S.Add(3, 10)fmt.Println(S.QuerySubtree(0)) // 20fmt.Println(S.QuerySubtreeRooted(4, 3)) // 20}}// https://judge.yosupo.jp/problem/vertex_add_path_sumfunc yosupoVertexAddPathSum() {in := bufio.NewReader(os.Stdin)out := bufio.NewWriter(os.Stdout)defer out.Flush()var n, q int32fmt.Fscan(in, &n, &q)weights := make([]int, n)for i := 0; i < int(n); i++ {fmt.Fscan(in, &weights[i])}tree := NewTree32(n)for i := 1; i < int(n); i++ {var u, v int32fmt.Fscan(in, &u, &v)tree.AddEdge(u, v, 0)}tree.Build(0)S := NewTreeAbleGroup(tree, false, true, false)S.Build(func(vidOrEid int32) E { return weights[vidOrEid] })for i := 0; i < int(q); i++ {var t intfmt.Fscan(in, &t)if t == 0 {var v, x int32fmt.Fscan(in, &v, &x)S.Add(v, int(x))} else {var u, v int32fmt.Fscan(in, &u, &v)fmt.Fprintln(out, S.QueryPath(u, v))}}}// https://yukicoder.me/problems/no/1641func yuki1641() {in := bufio.NewReader(os.Stdin)out := bufio.NewWriter(os.Stdout)defer out.Flush()var n, q int32fmt.Fscan(in, &n, &q)weights := make([]int, n)for i := 0; i < int(n); i++ {fmt.Fscan(in, &weights[i])}tree := NewTree32(n)for i := 1; i < int(n); i++ {var u, v int32fmt.Fscan(in, &u, &v)u, v = u-1, v-1tree.AddEdge(u, v, 0)}tree.Build(0)S := NewTreeAbleGroup(tree, false, false, true)S.Build(func(vidOrEid int32) E { return weights[vidOrEid] })for i := 0; i < int(q); i++ {var t, x, y int32fmt.Fscan(in, &t, &x, &y)x--if t == 1 {S.Add(x, int(y))}if t == 2 {fmt.Fprintln(out, S.QuerySubtree(x))}}}type E = intfunc e() E { return 0 }// func op(a, b E) E { return a + b }// func inv(a E) E { return -a }func op(a, b E) E { return a ^ b }func inv(a E) E { return a }type TreeAbelGroup struct {pathQuery, subtreeQuery booledge int32n int32tree *Tree32bit, bitSubtree *bitGroup32}func NewTreeAbleGroup(tree *Tree32, edge bool, pathQuery, subtreeQuery bool) *TreeAbelGroup {var edgeValue int32if edge {edgeValue = 1}return &TreeAbelGroup{pathQuery: pathQuery, subtreeQuery: subtreeQuery, edge: edgeValue, n: tree.n, tree: tree}}func (tag *TreeAbelGroup) Build(f func(vidOrEid int32) E) {bitRaw1 := make([]E, 2*tag.n)bitRaw2 := make([]E, tag.n)tree := tag.treefor v := int32(0); v < tag.n; v++ {var x Eif tag.edge == 0 {x = f(v)} else {if v == 0 {x = e()} else {x = f(tree.vToE[v])}}bitRaw1[tree.ELid(v)] = xbitRaw1[tree.ERid(v)] = inv(x)bitRaw2[tree.Lid[v]] = x}if tag.pathQuery {tag.bit = newBITGroup32From(2*tag.n, func(index int32) E {return bitRaw1[index]})}if tag.subtreeQuery {tag.bitSubtree = newBITGroup32From(tag.n, func(index int32) E {return bitRaw2[index]})}}func (tag *TreeAbelGroup) Add(i int32, x E) {v := iif tag.edge != 0 {v = tag.tree.EToV(i)}if tag.pathQuery {tag.bit.Update(tag.tree.ELid(v), x)tag.bit.Update(tag.tree.ERid(v), inv(x))}if tag.subtreeQuery {tag.bitSubtree.Update(tag.tree.Lid[v], x)}}func (tag *TreeAbelGroup) QueryPath(from, to int32) E {if !tag.pathQuery {panic("path query not enabled")}lca := tag.tree.Lca(from, to)x1 := tag.bit.QueryRange(tag.tree.ELid(lca)+1, tag.tree.ELid(from)+1)x2 := tag.bit.QueryRange(tag.tree.ELid(lca)+tag.edge, tag.tree.ELid(to)+1)return op(x1, x2)}func (tag *TreeAbelGroup) QuerySubtree(u int32) E {return tag.QuerySubtreeRooted(u, -1)}func (tag *TreeAbelGroup) QuerySubtreeRooted(u, root int32) E {if !tag.subtreeQuery {panic("subtree query not enabled")}l, r := tag.tree.Lid[u], tag.tree.Rid[u]if root == -1 {return tag.bitSubtree.QueryRange(l+tag.edge, r)}if root == u {return tag.bitSubtree.QueryAll()}if tag.tree.InSubtree(u, root) {return tag.bitSubtree.QueryRange(l+tag.edge, r)}return op(tag.bitSubtree.QueryRange(0, l+1), tag.bitSubtree.QueryRange(r, tag.n))}type bitGroup32 struct {n int32data []Etotal E}func newBITGroup32(n int32) *bitGroup32 {data := make([]E, n)for i := range data {data[i] = e()}return &bitGroup32{n: n, data: data, total: e()}}func newBITGroup32From(n int32, f func(index int32) E) *bitGroup32 {total := e()data := make([]E, n)for i := range data {data[i] = f(int32(i))total = op(total, data[i])}for i := int32(1); i <= n; i++ {j := i + (i & -i)if j <= n {data[j-1] = op(data[j-1], data[i-1])}}return &bitGroup32{n: n, data: data, total: total}}func (fw *bitGroup32) Update(i int32, x E) {fw.total = op(fw.total, x)for i++; i <= fw.n; i += i & -i {fw.data[i-1] = op(fw.data[i-1], x)}}func (fw *bitGroup32) QueryAll() E { return fw.total }// [0, end)func (fw *bitGroup32) QueryPrefix(end int32) E {if end > fw.n {end = fw.n}res := e()for end > 0 {res = op(res, fw.data[end-1])end &= end - 1}return res}// [start, end)func (fw *bitGroup32) QueryRange(start, end int32) E {if start < 0 {start = 0}if end > fw.n {end = fw.n}if start == 0 {return fw.QueryPrefix(end)}if start > end {return e()}pos, neg := e(), e()for end > start {pos = op(pos, fw.data[end-1])end &= end - 1}for start > end {neg = op(neg, fw.data[start-1])start &= start - 1}return op(pos, inv(neg))}type neighbor = struct {to int32eid int32cost int}type Tree32 struct {Lid, Rid []int32IdToNode []int32Depth []int32DepthWeighted []intParent []int32Head []int32 // 重链头Tree [][]neighborEdges [][2]int32vToE []int32 // 节点v的父边的idn int32}func NewTree32(n int32) *Tree32 {res := &Tree32{Tree: make([][]neighbor, n), Edges: make([][2]int32, 0, n-1), n: n}return res}func (t *Tree32) AddEdge(u, v int32, w int) {eid := int32(len(t.Edges))t.Tree[u] = append(t.Tree[u], neighbor{to: v, eid: eid, cost: w})t.Tree[v] = append(t.Tree[v], neighbor{to: u, eid: eid, cost: w})t.Edges = append(t.Edges, [2]int32{u, v})}func (t *Tree32) AddDirectedEdge(from, to int32, cost int) {eid := int32(len(t.Edges))t.Tree[from] = append(t.Tree[from], neighbor{to: to, eid: eid, cost: cost})t.Edges = append(t.Edges, [2]int32{from, to})}func (t *Tree32) Build(root int32) {if root != -1 && int32(len(t.Edges)) != t.n-1 {panic("edges count != n-1")}n := t.nt.Lid = make([]int32, n)t.Rid = make([]int32, n)t.IdToNode = make([]int32, n)t.Depth = make([]int32, n)t.DepthWeighted = make([]int, n)t.Parent = make([]int32, n)t.Head = make([]int32, n)t.vToE = make([]int32, n)for i := int32(0); i < n; i++ {t.Depth[i] = -1t.Head[i] = roott.vToE[i] = -1}if root != -1 {t._dfsSize(root, -1)time := int32(0)t._dfsHld(root, &time)} else {time := int32(0)for i := int32(0); i < n; i++ {if t.Depth[i] == -1 {t._dfsSize(i, -1)t._dfsHld(i, &time)}}}}// 从v开始沿着重链向下收集节点.func (t *Tree32) HeavyPathAt(v int32) []int32 {path := []int32{v}for {a := path[len(path)-1]for _, e := range t.Tree[a] {if e.to != t.Parent[a] && t.Head[e.to] == v {path = append(path, e.to)break}}if path[len(path)-1] == a {break}}return path}// 返回重儿子,如果没有返回 -1.func (t *Tree32) HeavyChild(v int32) int32 {k := t.Lid[v] + 1if k == t.n {return -1}w := t.IdToNode[k]if t.Parent[w] == v {return w}return -1}// 从v开始向上走k步.func (t *Tree32) KthAncestor(v, k int32) int32 {if k > t.Depth[v] {return -1}for {u := t.Head[v]if t.Lid[v]-k >= t.Lid[u] {return t.IdToNode[t.Lid[v]-k]}k -= t.Lid[v] - t.Lid[u] + 1v = t.Parent[u]}}func (t *Tree32) Lca(u, v int32) int32 {for {if t.Lid[u] > t.Lid[v] {u, v = v, u}if t.Head[u] == t.Head[v] {return u}v = t.Parent[t.Head[v]]}}func (t *Tree32) LcaRooted(u, v, root int32) int32 {return t.Lca(u, v) ^ t.Lca(u, root) ^ t.Lca(v, root)}func (t *Tree32) Dist(a, b int32) int32 {c := t.Lca(a, b)return t.Depth[a] + t.Depth[b] - 2*t.Depth[c]}func (t *Tree32) DistWeighted(a, b int32) int {c := t.Lca(a, b)return t.DepthWeighted[a] + t.DepthWeighted[b] - 2*t.DepthWeighted[c]}// c 是否在 p 的子树中.c和p不能相等.func (t *Tree32) InSubtree(c, p int32) bool {return t.Lid[p] <= t.Lid[c] && t.Lid[c] < t.Rid[p]}// 从 a 开始走 k 步到 b.func (t *Tree32) Jump(a, b, k int32) int32 {if k == 1 {if a == b {return -1}if t.InSubtree(b, a) {return t.KthAncestor(b, t.Depth[b]-t.Depth[a]-1)}return t.Parent[a]}c := t.Lca(a, b)dac := t.Depth[a] - t.Depth[c]dbc := t.Depth[b] - t.Depth[c]if k > dac+dbc {return -1}if k <= dac {return t.KthAncestor(a, k)}return t.KthAncestor(b, dac+dbc-k)}func (t *Tree32) SubtreeSize(v int32) int32 {return t.Rid[v] - t.Lid[v]}func (t *Tree32) SubtreeSizeRooted(v, root int32) int32 {if v == root {return t.n}x := t.Jump(v, root, 1)if t.InSubtree(v, x) {return t.Rid[v] - t.Lid[v]}return t.n - t.Rid[x] + t.Lid[x]}func (t *Tree32) CollectChild(v int32) []int32 {var res []int32for _, e := range t.Tree[v] {if e.to != t.Parent[v] {res = append(res, e.to)}}return res}// 收集与 v 相邻的轻边.func (t *Tree32) CollectLight(v int32) []int32 {var res []int32skip := truefor _, e := range t.Tree[v] {if e.to != t.Parent[v] {if !skip {res = append(res, e.to)}skip = false}}return res}func (tree *Tree32) RestorePath(from, to int32) []int32 {res := []int32{}composition := tree.GetPathDecomposition(from, to, 0)for _, e := range composition {a, b := e[0], e[1]if a <= b {for i := a; i <= b; i++ {res = append(res, tree.IdToNode[i])}} else {for i := a; i >= b; i-- {res = append(res, tree.IdToNode[i])}}}return res}// 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组.//// !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序.func (tree *Tree32) GetPathDecomposition(u, v int32, edge int32) [][2]int32 {up, down := [][2]int32{}, [][2]int32{}lid, head, parent := tree.Lid, tree.Head, tree.Parentfor {if head[u] == head[v] {break}if lid[u] < lid[v] {down = append(down, [2]int32{lid[head[v]], lid[v]})v = parent[head[v]]} else {up = append(up, [2]int32{lid[u], lid[head[u]]})u = parent[head[u]]}}if lid[u] < lid[v] {down = append(down, [2]int32{lid[u] + edge, lid[v]})} else if lid[v]+edge <= lid[u] {up = append(up, [2]int32{lid[u], lid[v] + edge})}for i := 0; i < len(down)/2; i++ {down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i]}return append(up, down...)}// 遍历路径上的 `[起点,终点)` 欧拉序 `左闭右开` 区间.func (tree *Tree32) EnumeratePathDecomposition(u, v int32, edge int32, f func(start, end int32)) {head, lid, parent := tree.Head, tree.Lid, tree.Parentfor {if head[u] == head[v] {break}if lid[u] < lid[v] {a, b := lid[head[v]], lid[v]if a > b {a, b = b, a}f(a, b+1)v = parent[head[v]]} else {a, b := lid[u], lid[head[u]]if a > b {a, b = b, a}f(a, b+1)u = parent[head[u]]}}if lid[u] < lid[v] {a, b := lid[u]+edge, lid[v]if a > b {a, b = b, a}f(a, b+1)} else if lid[v]+edge <= lid[u] {a, b := lid[u], lid[v]+edgeif a > b {a, b = b, a}f(a, b+1)}}// 返回 root 的欧拉序区间, 左闭右开, 0-indexed.func (tree *Tree32) Id(root int32) (int32, int32) {return tree.Lid[root], tree.Rid[root]}// 返回返回边 u-v 对应的 欧拉序起点编号, 1 <= eid <= n-1., 0-indexed.func (tree *Tree32) Eid(u, v int32) int32 {if tree.Lid[u] > tree.Lid[v] {return tree.Lid[u]}return tree.Lid[v]}// 点v对应的父边的边id.如果v是根节点则返回-1.func (tre *Tree32) VToE(v int32) int32 {return tre.vToE[v]}// 第i条边对应的深度更深的那个节点.func (tree *Tree32) EToV(i int32) int32 {u, v := tree.Edges[i][0], tree.Edges[i][1]if tree.Parent[u] == v {return u}return v}func (tree *Tree32) ELid(u int32) int32 {return 2*tree.Lid[u] - tree.Depth[u]}func (tree *Tree32) ERid(u int32) int32 {return 2*tree.Rid[u] - tree.Depth[u] - 1}func (t *Tree32) _dfsSize(cur, pre int32) {size := t.Ridt.Parent[cur] = preif pre != -1 {t.Depth[cur] = t.Depth[pre] + 1} else {t.Depth[cur] = 0}size[cur] = 1nexts := t.Tree[cur]for i := int32(len(nexts)) - 2; i >= 0; i-- {e := nexts[i+1]if t.Depth[e.to] == -1 {nexts[i], nexts[i+1] = nexts[i+1], nexts[i]}}hldSize := int32(0)for i, e := range nexts {to := e.toif t.Depth[to] == -1 {t.DepthWeighted[to] = t.DepthWeighted[cur] + e.costt.vToE[to] = e.eidt._dfsSize(to, cur)size[cur] += size[to]if size[to] > hldSize {hldSize = size[to]if i != 0 {nexts[0], nexts[i] = nexts[i], nexts[0]}}}}}func (t *Tree32) _dfsHld(cur int32, times *int32) {t.Lid[cur] = *times*times++t.Rid[cur] += t.Lid[cur]t.IdToNode[t.Lid[cur]] = curheavy := truefor _, e := range t.Tree[cur] {to := e.toif t.Depth[to] > t.Depth[cur] {if heavy {t.Head[to] = t.Head[cur]} else {t.Head[to] = to}heavy = falset._dfsHld(to, times)}}}// 路径 [a,b] 与 [c,d] 的交集.// 如果为空则返回 {-1,-1},如果只有一个交点则返回 {x,x},如果有两个交点则返回 {x,y}.func (t *Tree32) PathIntersection(a, b, c, d int32) (int32, int32) {ab := t.Lca(a, b)ac := t.Lca(a, c)ad := t.Lca(a, d)bc := t.Lca(b, c)bd := t.Lca(b, d)cd := t.Lca(c, d)x := ab ^ ac ^ bc // meet(a,b,c)y := ab ^ ad ^ bd // meet(a,b,d)if x != y {return x, y}z := ac ^ ad ^ cdif x != z {x = -1}return x, x}func max(a, b int) int {if a > b {return a}return b}func min(a, b int) int {if a < b {return a}return b}func min32(a, b int32) int32 {if a < b {return a}return b}func max32(a, b int32) int32 {if a > b {return a}return b}func abs(a int) int {if a < 0 {return -a}return a}